Karst and Vegetation: Biodiversity and Geobotany in the Sierra de las Nieves Karst Aquifer (Málaga, Spain)

  • Juan Antonio Luque-EspinarEmail author
  • Eulogio Pardo-Igúzquiza
  • Víctor Francisco Rodríguez-Galiano
  • Mario Chica-Olmo
  • Rogelio de la Vega-Panizo
Conference paper
Part of the Advances in Karst Science book series (AKS)


The Sierra de las Nieves karst system is a high-relief Mediterranean karst that hosts important botanical diversity, including the unique Spanish fir Abies pinsapo. Vegetation is mainly controlled by the soil development and climatic conditions. In turn, the soil is controlled by lithology, fracturing, weathering and slope. There is also positive of soil and vegetation feedback in the epikarst development. This study focuses on the spatial variability of vegetation in a karst massif and its relationship with the main lithologies, karst depressions, fracturation density and slope. Contingency analysis shows degrees of association between the plant species studied and the other parameters. Thus, plant species preferences have been found for certain lithologies, degree of fracture development, karst depressions of ground slope.


Karst Biodiversity Vegetation Geology 



This work was supported by project CGL2015-71510-R (Ministerio de Economía, Industria y Competitividad of Spain).


  1. Atalay I (1988) Karstification and ecology of the karstic terrains of the Taurus Mountains in Turkey. Bulletin of Geomorphology. 16: 1–8.Google Scholar
  2. Atalay I (1991) Soil forming in the karstin terrains of Turkey. Bulletin of Geomofphology. 19: 139–144.Google Scholar
  3. Atalay I (1997) Red Mediterranean soils in some karstic regions of taurus mountains, Turkey. Catena. 3–4: 247–260.CrossRefGoogle Scholar
  4. Bakalowicz M (2012) Epikarst. In: White, W.B., Culver, D.C. (Eds.), Encyclopaedia of Caves, (second edition). Academic Press, 284–288.Google Scholar
  5. Bakalowicz M (2004) The epikarst. The skin of karst. In: Jones, W.K., Culver, D.C. & Herman, J.S. (Eds.) – Epikarst. Special Publication 9. Charles Town, WV: Karst Waters Institute: 16–22.Google Scholar
  6. Ball GH, Hall DJ (1965) Isodata: a method of data analysis and pat-tern classification. Stanford Research Institute. Menlo Park. United States. Office of Naval Research. Information Sciences Branch.Google Scholar
  7. Barany-Kevei I, Horváth A (1996) Survey of the interaction between soil and vegetation in a karst ecological system at Aggtelek, Hungary. Acta Geogr. Szegediensis. XXXV: 81–87.Google Scholar
  8. Cabezudo-Artero B, Pérez-Latorre A, Navas-Fernández P, Gil-Jiménez Y, Navas-Fernández D (1998) Parque Natural de la Sierra de las Nieves “cartografía y evaluación de la flora y vegetación. Junta de Andalucía, 367 pp.Google Scholar
  9. Efe R (2014) Ecological properties of vegetation formations on karst terrains in the central Taurus Mountains (Southern Turkey). The 3rd International Geography Symposium-GEOMED2013. Procedia-Social and Behavio Scien. 120: 673–679.CrossRefGoogle Scholar
  10. Ford D, Williams P (2007) Karst Hydrogeology and Geomorphology. John Wiley and Sons, Chichester, UK, 562 pp.CrossRefGoogle Scholar
  11. IGME (2015). Cartografía geológica de España.
  12. Journel AG, Huijbregts Ch (1978) Mining geostatistics. Academic Press, New York, 600 pp.Google Scholar
  13. Klimchouk AB (2004) Towards defining, delimiting and classifying epikarst: its origin, processes and variants of geomorphic evolution. In: Jones WK, Culver DC, Herman JS (Eds.), Epikarst. Special Publication 9. Charles Town, WV, Karst Waters Institute, pp. 23–35.Google Scholar
  14. Liang Y, He X, Chen C, Feng S, Liu L, Chen X, Zhao Z, Su Y (2015). Influence of plant communities and soil properties during natural vegetation restoration on arbuscular mycorrhizal fungal communities in a karst region. Ecological Engineering. 82: 57–65.CrossRefGoogle Scholar
  15. Liang Y, Pan F, He X, Chen X, Su Y (2016) Effect of vegetation types on soil arbuscular mycorrhizal fungi and nitrogen-fixing bacterial communities in a karst region. Environ Sci Pollut Res. 23:18482–18491.CrossRefGoogle Scholar
  16. Liu C, Liu Y, Guo K, Wang S, Liu, H, Zhao H, Qiao X, Hou D, Li S (2016) Aboveground carbon stock, allocation and sequestration potential during vegetation recovery in the karst region of southwestern China: A case study at a watershed scale. Agriculture, Ecosystems and Environment. 235: 91–100.CrossRefGoogle Scholar
  17. Lu X, Toda H, Ding F, Fang S, Yang W, Xu H (2014) Effect of vegetation types on chemical and biological properties of soils of karst ecosystems. Eur Jour of Soil Biol. 61: 49–57.CrossRefGoogle Scholar
  18. Lunetta RS, Balogh ME (1999) Application of Multi-Temporal Landsat 5 TM Imagery for Wetland Identification. Photogrammetric Engineering & Remote Sensing 65: 1303–1310.Google Scholar
  19. Martín-Algarra A (1987) Evolución geológica Alpina del contacto entre las Zonas Internas y las Zonas Externas de la Cordillera Bética (Sector Occidental). Tesis Doctoral. Universidad de Granada, 1171 pp.Google Scholar
  20. Oetter DR, Cohen WB, Berterretche M, Maiersperger TK, Kennedy RE (2001) Land cover mapping in an agricultural setting using multiseasonal Thematic Mapper data. Remote Sensing of Environment 76: 139–155.CrossRefGoogle Scholar
  21. Pardo-Igúzquiza E, Durán JJ, Luque-Espinar JA, Robledo-Ardila PA, Martos-Rosillo S, Guardiola-Albert C, Pedrera A (2015) Karst massif susceptibility from rock matrix, fracture and conduit porosities: a case study of the Sierra de las Nieves (Málaga, Spain). Environmental Earth Sciences 74: 7583–7592.CrossRefGoogle Scholar
  22. Pedrera A, Luque-Espinar JA, Martos-Rosillo S, Pardo-Igúzquiza E, Durán-Valsero JJ, Martínez-Moreno F, Guardiola-Albert C (2015) Structural controls on karstic conduits in a collisional orogeny (Sierra de las Nieves, Betic Cordillera, S Spain). Geomorphology 238: 15–26.CrossRefGoogle Scholar
  23. Rodriguez-Galiano VF, Chica-Olmo M, Abarca-Hernandez F, Atkinson PM, Jeganathan C (2012) Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sensing of Environment 121: 93–107.CrossRefGoogle Scholar
  24. Rouse JW, Haas RW, Schell JA, Deering DH, Harlan JC (1974) Monitoring the vernal advancement and retrogradation (Greewave effect) of natural vegetation, Greebelt, MD. USA, NASA/GSFC.Google Scholar
  25. Shen LN, Deng XH, Jiang ZC, Li T (2013) Hydrogeochemical effects of an epikarst ecosystem: case study of the Nongla Landiantang Spring catchment. Env Earth Scien. 68 (3): 667–677.CrossRefGoogle Scholar
  26. Spiegel MR (1998) Schaum’s Outline of Statistics. McGraw Hill, New York, 600 pp.Google Scholar
  27. Tonga X, Wanga K, Yue Y, Brandt M, Liu B, Zhang C, Liao C, Fensholt R (2017) Quantifying the effectiveness of ecological restoration projects onlong-term vegetation dynamics in the karst regions of Southwest China. Inter J of Applied Earth Obser and Geoinf. 54: 105–113.CrossRefGoogle Scholar
  28. Williams PW (1983). The role of the subcutaneous zone in karst hydrology. J Hydrol. 61: 45–67.CrossRefGoogle Scholar
  29. Williams PW (2008) The role of the epikarst in karst and cave hydrogeology: a review. Int. J. Speleol. 37, 1–10.CrossRefGoogle Scholar
  30. Wolter PT, Mladenoff, D.J., Host, G.E., G.E., & T.R. (1995) Improved forest classification in the Northern Lake States using multi-temporal Landsat imagery. Photogrammetric Engineering & Remote sensing, 61, 1129–1143.Google Scholar
  31. Yuan F, Bauer ME, Heinert NJ, Holden G (2005) Multi-level land cover mapping of the Twin Cities (Minnesota) metropolitan area with multi-seasonal Landsat TM/ETM + data. Geocarto International 20: 5–14.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Juan Antonio Luque-Espinar
    • 1
    Email author
  • Eulogio Pardo-Igúzquiza
    • 2
  • Víctor Francisco Rodríguez-Galiano
    • 3
  • Mario Chica-Olmo
    • 4
  • Rogelio de la Vega-Panizo
    • 5
  1. 1.Instituto Geológico y Minero de EspañaGranadaSpain
  2. 2.Instituto Geológico y Minero de EspañaMadridSpain
  3. 3.Universidad de Sevilla. Geografía Física y Análisis Geográfico RegionalSevilleSpain
  4. 4.Universidad de GranadaGranadaSpain
  5. 5.Departamento Ingeniería Geológica y MineraUniversidad Politécnica de Madrid. E.T.S. Ingenieros de Minas y EnergíaMadridSpain

Personalised recommendations