Advertisement

Simplified VarKarst Semi-distributed Model Applied to Joint Simulations of Discharge and Piezometric Variations in Villanueva Del Rosario Karst System (Malaga, Southern Spain)

  • Javier Martín-AriasEmail author
  • Andreas Hartmann
  • Mathias Mudarra
  • Pedro Martínez-Santos
  • Bartolomé Andreo
Conference paper
Part of the Advances in Karst Science book series (AKS)

Abstract

Numerical modeling provides well-established tools for advancing in water management. In this study, a simplified version of the semi-distributed VarKarst approach has been developed to reduce modeling routine and, therefore, the time of calculation needed for jointly simulating spring discharge and piezometric head variations in the same karst system located in southern Spain. Simulated spring outflows were compared with spring flow data derived from a previous application of the original VarKarst. Scatter correlation of spring flows yields Kling-Gupta efficiency (KGE) and a Pearson’s coefficient (R2) of 0.90 and 0.89, respectively. The modified approach includes new equations that consider the distance between sea level and the basement of the aquifer, from which the piezometric-level variations were calculated. The KGE, R2, and the root-mean-squared error results obtained of groundwater level were 0.79, 0.85, and 3.07 m, respectively. We conclude that the simplified VarKarst numerical code can provide realistic hydrodynamic results in the karst system, as original VarKarst, concerning both discharge and groundwater level dynamics. This capacity of simulation could help to reduce uncertainty in model routines.

Keywords

Karst (carbonate) aquifer Semi-distributed modeling VarKarst Hydrodynamic simulation 

Notes

Acknowledgements

This chapter is a contribution to the project CGL2015-65858R and to the research group 308 of Andalusian Government.

References

  1. Adinehvand, R, Raeisi, E, Hartmann, A (2017). A step-wise semi-distributed simulation approach to characterize a karst aquifer and to support dam construction in a data-scarce environment. J. Hydrol. 554, 470–481.  https://doi.org/10.1016/j.jhydrol.2017.08.056.CrossRefGoogle Scholar
  2. Brenner, S, Coxon, G, Howden, NJK, Freer, J, Hartmann, A (2018) Process-based modelling to evaluate simulated ground-water levels and frequencies in a Chalk catchment in south-western England. Nat. Hazards Earth Syst. Sci. 18, 445–461.  https://doi.org/10.5194/nhess-18-445-2018.CrossRefGoogle Scholar
  3. COST (1995), COST 65: Hydrogeological aspects of groundwater protection in karstic areas, Final report (COST action 65), Rep. EUR 16547, 446 pp., Brussel, Belgium.Google Scholar
  4. Hartmann A, Barberá JA, Lange J, Andreo B, Weiler M (2013) Progress in the hydrologic simulation of time variant recharge areas of karst systems – Exemplified at a karst spring in Southern Spain. Advances in Water Resources 54: 149–160,  https://doi.org/10.1016/j.advwatres.2013.01.010.CrossRefGoogle Scholar
  5. Hartmann A, Mudarra M, Andreo B, Marín A, Wagener T, Lange J (2014) Modeling spatiotemporal impacts of hydroclimatic extremes on groundwater recharge at a Mediterranean karst aquifer. Water Resources Research 50.  https://doi.org/10.1002/2014wr015685.CrossRefGoogle Scholar
  6. Hartmann A, Gleeson T, Rosolem R, Pianose F, Wada Y, Wagener T (2015) A large-scale simulation model to assess karstic groundwater recharge over Europe and the Mediterranean. Geosci. Model Dev., 8, 1729–1746.  https://doi.org/10.5194/gmd-8-1729-2015.CrossRefGoogle Scholar
  7. Jimenez-Martinez, J, Smith, M, Pope, D (2016) Prediction of groundwater induced flooding in a chalk aquifer for future climate change scenarios, Hydrol. Process., 30, 573–587.  https://doi.org/10.1002/hyp.10619, 2016.
  8. Ladouche, B, Marechal, JC, Dorfliger, N (2014) Semi-distributed lumped model of a karst system under active management, J. Hydrol., 509, 215–230.  https://doi.org/10.1016/j.hydrol.2013.11.017.
  9. Martín-Algarra M (1987) Evolución geológica alpìna del contacto entre las Zonas Internas y Externas de la Corduillera Bética. Ph.D. Thesis, University of Granada.Google Scholar
  10. Mudarra M (2012) Importancia relative de la zona no saturada y zona saturada en el funcionamiento hidrogeológico de los acuíferos carbonáticos. Caso de la Alta Cadena, sierra de Enmedio y área de Los Tajos (provincia de Málaga). Ph.D. Thesis, University of Málaga.Google Scholar
  11. Mudarra M, Andreo B, Marín AI, Vadillo I, Barberá JA (2014) Combined use of natural and artificial reacers to determine the hydrogeological functioning of a karst aquifer: the Villanueva del Rosario system (Andalusia, Southern Spain). Hydrogeological Journal 22: 1027–1039,  https://doi.org/10.1002/2014wr015685.CrossRefGoogle Scholar
  12. Vrugt JA, ter Braak CJF, Clark MP, Hyman JM, Robinson BA (2008) Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain monte Carlo simulation. Water Resources Research, 44: W00B09.  https://doi.org/10.1029/2007wr006720.
  13. Vrugt JA, ter Braak CJF, Diks CGH, Robinson BA, Hyman JM, Higdon D (2009) Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling. International Journal of Nonlinear Sciences and Numerical Simulation, 10(3), 271–288.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Javier Martín-Arias
    • 1
    Email author
  • Andreas Hartmann
    • 2
    • 3
  • Mathias Mudarra
    • 1
  • Pedro Martínez-Santos
    • 4
  • Bartolomé Andreo
    • 1
  1. 1.Department of Geology and Centre of Hydrogeology of the University of Malaga (CEHIUMA)Universidad de MálagaMálagaSpain
  2. 2.Institute of HydrologyFreiburg UniversityFreiburgGermany
  3. 3.Department of Civil EngineeringUniversity of BristolBristolUK
  4. 4.UNESCO Chair “Appropriate Technologies for Human Development”, Department of Geodynamics, Stratigraphy and Palaeontology, Faculty of Geological SciencesUniversidad Complutense de MadridMadridSpain

Personalised recommendations