Dynamics and Fluxes of Nutrients in Surface and Groundwaters in a Cultivated Karstic Basin in the Jura Mountains

  • Jean-Baptiste CharlierEmail author
  • Aurélien Vallet
  • Didier Tourenne
  • Guillaume Hévin
Conference paper
Part of the Advances in Karst Science book series (AKS)


This study aims at characterizing spatiotemporal variability of the fate of nutrients in the karst basin of the Loue River in the French Jura Mountains. The long-term temporal analysis (40 years) shows that the NO3 increase from 1970s to the 1990s followed by a no-trend period in 2000s. The changes are linked to the usage of mineral fertilizers. The short-term analysis shows that the degree of aquifer saturation at the beginning of the hydrological cycle is a key factor to assess NO3 mobilization during the recharge events. Contrary to nitrate, the PO4 concentrations are disconnected from agricultural practices and are probably the consequence of point-source contaminations from domestic wastewater. Annual loads were estimated on 5 sub-basins in order to characterize the spatial variability of water contamination. Difference in fluxes for each sub-basin highlighted the most impacted reaches, providing information on hydrological units where anthropogenic pressure is highest. A correlation of NO3–N loads with the surface area of main crops using highest level of fertilization and tillage (field crops, temporary grasslands) is proposed, highlighting the environmental impact of most intensive agricultural practices (inventoried in a small area covering less than 10% of the whole basin). This study illustrates complex interactions between agricultural practice and hydrological function and gives first insight into the fate of nutrients in karst environment.


Water quality Nitrate Phosphate Land-use Trend River 



This work was funded by the Rhone-Mediterranean and Corsica Water Agency, the Doubs Department, and the French Geological Survey (BRGM).


  1. Aguilera, R., Marcé, R., and Sabater, S., 2015. Detection and attribution of global change effects on river nutrient dynamics in a large Mediterranean basin, Biogeosciences, 12, 4085–4098, Scholar
  2. Bloor, J.M.G., and Bardgett, R.D., 2012. Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: Interactions with plant species diversity and soil nitrogen availability, Perspectives in Plant Ecology, Evolution and Systematics, 14(3):193–204.CrossRefGoogle Scholar
  3. Bouza-Deaño, R., Ternero-Rodríguez, M., and Fernández-Espinosa, A.J., 2008. Trend study and assessment of surface water quality in the Ebro River (Spain), J. Hydrol., 361, 227–239. CrossRefGoogle Scholar
  4. Charlier J.-B., Desprats J.-F., Ladouche B., 2014. Appui au SCHAPI 2014 – Module 1 – Rôle et contribution des eaux souterraines d’origine karstique dans les crues de la Loue à Chenecey-Buillon, Rapport BRGM/RP-63844-FR, 109p,
  5. Charlier J.-B., Vallet A., Hévin G., Moiroux F. 2018. Projet QUARSTIC: QUAlité des eaux et Réseau de Surveillance des rIvières Comtoises. Rapport final. BRGM/RP-68315-FR, 150p, RP-68315-FR.pdf.
  6. Chen Z, Auler AS, Bakalowicz M, Drew D, Griger F, Hartmann J, Jiang G, Moosdorf N, Richts A, Stevanovic Z, Veni G, Goldscheider N, 2017. The World Karst Aquifer Mapping project: concept, mapping procedure and map of Europe. Hydrogeol J, 25:771–785. Scholar
  7. Cholet, C., Steinmann, M., Charlier, J.-B., and Denimal, S., 2019. Characterizing fluxes of trace metals related to dissolved and suspended matter during a storm event: application to a karst aquifer using trace metals and rare earth elements as provenance indicators, Hydrogeology Journal, 27:305–319. Scholar
  8. Dörfliger N., Pinault J.-L., Petit V., Jauffret D., 2004. Systèmes karstiques et crues du Doubs. Méthodologie de détermination de la contribution des systèmes karstiques aux écoulements de surface, lors de crues et des étiages. BRGM/RP-53063-FR, 182p. RP-53063-FR.pdf.
  9. Floury, M., Delattre, C., Ormerod, S. J., and Souchon, Y., 2012. Global versus local change effects on a large European river, Sci. Total Environ., 441, 220–229.CrossRefGoogle Scholar
  10. Francis, G. S., Haynes, R. J., Williams, P. H., 1995. Effects of the timing of ploughing-in temporary leguminous pastures and two winter cover crops on nitrogen mineralization, nitrate leaching and spring wheat growth. J. Agric. Sci. 124, 1–9.CrossRefGoogle Scholar
  11. Huebsch, M., O. Fenton, B. Horan, D. Hennessy, K. G. Richards, P. Jordan, N. Goldscheider, C. Butscher, and P. Blum, 2014. Mobilisation or dilution? nitrate response of karst springs to high rainfall events. Hydrology and Earth System Sciences 18 (11), 4423–4435.CrossRefGoogle Scholar
  12. Lorette G., R. Lastennet, N. Peyraube, A. Denis, 2018. Groundwater-flow characterization in a multilayered karst aquifer on the edge of a sedimentary basin in western France. Journal of Hydrology 566, 137–149.CrossRefGoogle Scholar
  13. Ludwig, W., Dumont, E., Meybeck, M., and Heussner, S., 2009. River discharges of water and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and future decades?, Prog. Oceanogr., 80, 199–217.CrossRefGoogle Scholar
  14. Mahler B., D. Valdes, M. Musgrove, N. Massei, 2008. Nutrient dynamics as indicators of karst processes: comparison of the chalk aquifer (Normandy, France) and the Edwards aquifer (Texas, USA), J. Contam. Hydrol., 98, 36–49.CrossRefGoogle Scholar
  15. Mainstone CP, and Parr W., 2002. Phosphorus in rivers - ecology and management. Sci Total Environ, 282–283:25–47.CrossRefGoogle Scholar
  16. Mudarra, M., Andreo, B., and Mudry, J., 2012. Monitoring groundwater in the discharge area of a complex karst aquifer to assess the role of the saturated and unsaturated zones, Environ. Earth Sci., 65, 2321–2336, Scholar
  17. Pronk, M., Goldscheider, N., and Zopfi, J., 2009. Microbial communities in karst groundwater and their potential use for biomonitoring, Hydrogeol. J., 17, 37–48.CrossRefGoogle Scholar
  18. Seidel K, M. Kayser, J. Müller, J. Isselstein, 2009. The effect of grassland renovation on soil mineral nitrogen and on nitrate leaching during winter. J. Plant Nutrit. Soil Sci., 172, 512–519.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jean-Baptiste Charlier
    • 1
    Email author
  • Aurélien Vallet
    • 2
  • Didier Tourenne
    • 3
  • Guillaume Hévin
    • 1
  1. 1.BRGM, University of MontpellierMontpellierFrance
  2. 2.BRGMDijonFrance
  3. 3.Chambre interdépartementale d’agriculture Doubs—Territoire de BelfortBesançonFrance

Personalised recommendations