Skip to main content

Detection and Characterization of Sinkholes Through Integration of Field Surveys and Semi-automated Techniques

  • Conference paper
  • First Online:
Eurokarst 2018, Besançon

Part of the book series: Advances in Karst Science ((AKS))

  • 448 Accesses

Abstract

Sinkholes are among the most typical landforms of karst terrains. They may originate from a simple downward process, through dissolution of carbonate rocks, or through rapid, sometimes catastrophic, collapse, due to the presence of underground voids or cavities, from where the instability may eventually reach the ground surface. These two extremes imply a great variety in vulnerability of man-made structures, and damage to the population, which makes the analysis of sinkholes extremely important to society. In this contribution, we present an integrated workflow to detect, classify and analyze sinkholes. The ultimate aim is to evaluate the sinkhole susceptibility and hazard. The methodology used will be illustrated by means of an example from the karst of Apulia, south-eastern Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Basso, A., Bruno, E., Parise, M. and Pepe, M. (2013). Morphometric analysis of sinkholes in a karst coastal area of southern Apulia (Italy). Environmental Earth Sciences 70, 2545–2559. https://doi.org/10.1007/s12665-013-2297-z.

    Article  Google Scholar 

  • Bauer, C. (2015). Analysis of dolines using multiple methods applied to airborne laser scanning data. Geomorphology 250, 78–88. http://doi.org/10.1016/j.geomorph.2015.08.015.

    Article  Google Scholar 

  • Beck, B. (2007). Soil piping and sinkhole failures. In: Culver, D.C. and White, W.B. (Eds.), Encyclopedia of caves. Elsevier Academic Press, 2nd edition, 521–526.

    Google Scholar 

  • De Carvalho Junior, O.A., Guimaraes, R.F., Montgomery D.R., Gillespie, A.R., Gomes, R.A.T., de Souza Martins E. & Silva, N.C. (2014). Karst depression detection using ASTER, ALOS/PRISM and SRTM-derived digital elevation models in the Bambui Group, Brazil. Remote Sensing 6 (1), 330–351. http://doi.org/10.3390/rs6010330.

    Article  Google Scholar 

  • Del Prete, S., Iovine, G., Parise, M. and Santo. A. (2010). Origin and distribution of different types of sinkholes in the plain areas of Southern Italy. Geodinamica Acta 23 (1/3), 113–127.

    Article  Google Scholar 

  • Doctor, D.H. & Young, J. (2013). An evaluation of automated Gis tools for delineating karst sinkholes and closed depressions from 1-meter Lidar-derived digital elevation data. Proc. 13th Multidisc. Conf. Sink. Eng. Environ. Impacts Karst, 449–458.

    Google Scholar 

  • Festa, V., Fiore, A., Parise, M. and Siniscalchi, A. (2012). Sinkhole evolution in the Apulian karst of southern Italy: a case study, with some considerations on sinkhole hazards. J. Cave Karst Studies 74 (2), 137–147.

    Article  Google Scholar 

  • Gutierrez, F., Parise, M., De Waele, J. and Jourde, H. (2014). A review on natural and human-induced geohazards and impacts in karst. Earth-Science Reviews 138, 61–88.

    Article  Google Scholar 

  • Jeanpert, J., Genthon, P., Maurizot, P., Folio, J.L., VendĂ©-Leclerc, M., SĂ©rino, J., Join, J.L. & Iseppi, M. (2016). Morphology and distribution of dolines on ultramafic rocks from airborne LiDAR data: the case of southern Grande Terre in New Caledonia (SW Pacific). Earth Surface Processes and Landforms 41, 1854–1868. http://doi.org/10.1002/esp.3952.

    Article  Google Scholar 

  • Kobal, M., Bertoncelj, I., Pirotti, F., Dakskobler, I. & Kutnar, L. (2015). Using lidar data to analyse sinkhole characteristics relevant for understory vegetation under forest cover - Case study of a high karst area in the Dinaric mountains. PLoS One 10, 1–19. https://doi.org/10.1371/journal.pone.0122070

    Article  Google Scholar 

  • Kunaver, J. (1983). GeomorfoloÅ¡ki razvoj Kaninskega pogorja s posebnim ozirom na glaciokraÅ¡ke pojave. Geogr Zb. 22, 197–346.

    Google Scholar 

  • Margiotta, S., Negri, S., Parise, M. and Valloni, R. (2012). Mapping the susceptibility to sinkholes in coastal areas, based on stratigraphy, geomorphology and geophysics. Natural Hazards 62 (2), 657–676.

    Article  Google Scholar 

  • Pardo-IgĂºzquiza, E., DurĂ¡n, J.J. & Dowd, P.A. 2013. Automatic detection and delineation of karst terrain depressions and its application in geomorphological mapping and morphometric analysis. Acta Carsologica 42/1, 17–24.

    Article  Google Scholar 

  • Pardo-IgĂºzquiza, E., Pulido-Bosch, A., LĂ³pez-Chicano, M. & DurĂ¡n, J.J. 2016. Morphometric analysis of karst depressions on a MediterrĂ¡nea karst massif. Geografiska Annaler: Series A, Physical Geography, 98 (3), 247–263.

    Google Scholar 

  • Parise, M. (2015a). Karst geo-hazards: causal factors and management issues. Acta Carsologica 44 (3), 401–414.

    Google Scholar 

  • Parise, M. (2015b). A procedure for evaluating the susceptibility to natural and anthropogenic sinkholes. Georisk 9 (4), 272–285.

    Google Scholar 

  • Parise, M. and Vennari, C. (2017). Distribution and features of natural and anthropogenic sinkholes in Apulia. In: Renard, P. and Bertrand, C. (Eds.), EuroKarst 2016, Neuchatel. Advances in the hydrogeology of karst and carbonate reservoirs. Springer, ISBN 978-3-319-45464-1, 27-34.

    Google Scholar 

  • Parise, M., Federico, A., Delle Rose, M. and Sammarco, M. (2003). Karst terminology in Apulia (southern Italy). Acta Carsologica 32 (2), 65–82.

    Google Scholar 

  • Parise, M., Pisano, L. and Vennari, C. (2018). Sinkhole clusters after heavy rainstorms. Journal of Cave and Karst Studies 80 (1), 28–38. https://doi.org/10.4311/2017es0105.

    Article  Google Scholar 

  • Pepe, M. & Parise, M. (2014). Structural control on development of karst landscape in the Salento Peninsula (Apulia, SE Italy). Acta Carsologica 43, 101–114.

    Article  Google Scholar 

  • Wall, J., Bohnenstiehl, D.W.R., Wegmann, K.W. & Levine, N.S. (2017). Morphometric comparisons between automated and manual karst depression inventories in Apalachicola National Forest, Florida, and Mammoth Cave National Park, Kentucky, USA. Natural Hazards 85 (2), 729–749. https://doi.org/10.1007/s11069-016-2600-x.

    Article  Google Scholar 

  • Waltham, T., Bell, F. and Culshaw, M. (2005). Sinkholes and subsidence. Karst and cavernous rocks in engineering and construction. Springer Praxis.

    Google Scholar 

  • Zhu, J., Taylor, T.P., Currens, J.C., Crawford, M.M. (2014). Improved karst sinkhole mapping in Kentucky using LiDAR techniques: a pilot study in Floyds fork watershed. Journal of Cave and Karst Studies 76, 207–216. https://doi.org/10.4311/2013es0135.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Parise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parise, M., Pisano, L., Zumpano, V. (2020). Detection and Characterization of Sinkholes Through Integration of Field Surveys and Semi-automated Techniques. In: Bertrand, C., Denimal, S., Steinmann, M., Renard, P. (eds) Eurokarst 2018, Besançon. Advances in Karst Science. Springer, Cham. https://doi.org/10.1007/978-3-030-14015-1_1

Download citation

Publish with us

Policies and ethics