Advertisement

P2 Mesh Optimization Operators

  • Rémi FeuilletEmail author
  • Adrien Loseille
  • Frédéric Alauzet
Chapter
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 127)

Abstract

Curved mesh generation starting from a P1 mesh relies on mesh deformation and mesh optimization techniques. Mesh optimization techniques consist in locally modifying the mesh in order to improve it with respect to a given quality criterion. This work presents the generalization of two mesh quality-based optimization operators to P2 meshes. The generalized operators consist in mesh smoothing and generalized swapping. With the use of these operators, P2 mesh generation starting from a P1 mesh is more robust and P2 connectivity-change moving mesh methods for large displacements are now possible.

Notes

Acknowledgements

This work was supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

The authors also would like to thank the reviewers for their fruitful remarks.

References

  1. 1.
    F. Alauzet, A changing-topology moving mesh technique for large displacements. Eng. Comput. 30(2), 175–200 (2014)CrossRefGoogle Scholar
  2. 2.
    F. Alauzet, A. Loseille, D. Marcum, On a robust boundary layer mesh generation process, in 55th AIAA Aerospace Sciences Meeting, AIAA Paper 2017-0585, Grapevine, TX, USA, 2017Google Scholar
  3. 3.
    H. Borouchaki, P.L. George, Meshing, Geometric Modeling and Numerical Simulation 1: Form Functions, Triangulations and Geometric Modeling (Wiley, Hoboken, 2017)CrossRefGoogle Scholar
  4. 4.
    P.G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978)zbMATHGoogle Scholar
  5. 5.
    M. Fortunato, P.-O. Persson, High-order unstructured curved mesh generation using the Winslow equations. J. Comput. Phys. 307, 1–14 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    P.J. Frey, P.L. George, Mesh Generation: Application to Finite Elements (Wiley, New York, 2008)CrossRefGoogle Scholar
  7. 7.
    P.L. George, H. Borouchaki, Construction of tetrahedral meshes of degree two. Int. J. Numer. Methods Eng. 90(9), 1156–1118 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    P.L. George, H. Borouchaki, F. Alauzet, P. Laug, A. Loseille, L. Maréchal, Meshing, Geometric Modeling and Numerical Simulation 2: Metrics, Meshing and Mesh Adaptation (Wiley, 2019)Google Scholar
  9. 9.
    R. Hartmann, T. Leicht, Generation of unstructured curvilinear grids and high-order discontinuous Galerkin discretization applied to a 3D high-lift configuration. Int. J. Numer. Methods Fluids 82(6), 316–333 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis and Applications. (Springer, New York, 2008)CrossRefGoogle Scholar
  11. 11.
    A. Johnen, J.-F. Remacle, C. Geuzaine, Geometrical validity of curvilinear finite elements. J. Comput. Phys. 233, 359–372 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    S.L. Karman, J.T. Erwin, R.S. Glasby, D. Stefanski, High-order mesh curving using WCN mesh optimization, in 46th AIAA Fluid Dynamics Conference, AIAA AVIATION Forum. American Institute of Aeronautics and Astronautics, 2016Google Scholar
  13. 13.
    D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization. Math. Program. 45(1), 503–528 (1989)MathSciNetCrossRefGoogle Scholar
  14. 14.
    D. Moxey, D. Ekelschot, Ü. Keskin, S.J. Sherwin, J. Peirò, High-order curvilinear meshing using a thermo-elastic analogy. Comput. Aided Des. 72, 130–139 (2016)CrossRefGoogle Scholar
  15. 15.
    E. Ruiz-Gironès, X. Roca, J. Sarrate, High-order mesh curving by distortion minimization with boundary nodes free to slide on a 3D CAD representation. Comput. Aided Des. 72, 52–64 (2016); 23rd International Meshing Roundtable Special Issue: Advances in Mesh GenerationCrossRefGoogle Scholar
  16. 16.
    T. Toulorge, C. Geuzaine, J.-F. Remacle, J. Lambrechts, Robust untangling of curvilinear meshes. J. Comput. Phys. 254, 8–26 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    T. Toulorge, J. Lambrechts, J.-F. Remacle, Optimizing the geometrical accuracy of curvilinear meshes. J. Comput. Phys. 310, 361–380 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Turner, J. Peirò, D. Moxey, A variational framework for high-order mesh generation. Procedia Eng. 163(Supplement C), 340–352 (2016); 25th International Meshing RoundtableCrossRefGoogle Scholar
  19. 19.
    J. Vanharen, G. Puigt, X. Vasseur, J.-F. Boussuge, P. Sagaut, Revisiting the spectral analysis for high-order spectral discontinuous methods. J. Comput. Phys. 337, 379–402 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Vlachos, P. Jörg, C. Boyd, J.L. Mitchell, Curved PN triangles, in Proceedings of the 2001 Symposium on Interactive 3D Graphics, I3D ’01 (ACM, New York, 2001), pp. 159–166CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rémi Feuillet
    • 1
    • 2
    Email author
  • Adrien Loseille
    • 1
  • Frédéric Alauzet
    • 1
  1. 1.GAMMA3 TeamINRIA SaclayPalaiseauFrance
  2. 2.POEMS TeamCNRS/ENSTA/INRIAPalaiseauFrance

Personalised recommendations