Advertisement

Classification

  • Leszek RutkowskiEmail author
  • Maciej Jaworski
  • Piotr Duda
Chapter
Part of the Studies in Big Data book series (SBD, volume 56)

Abstract

In this chapter, we will investigate the issue of automatic selection of ensemble components. The presented methodology allows guaranteeing, that a new component will be included into an ensemble only if it significantly improves the performance of the ensemble, not only for a current chunk of data but also for the whole stream. Additionally, the extension of this method dedicated to deal with special types of concept-drift is presented. The introduced modification allows increasing the diversity of the ensemble components. The problem of selection component is an essential issue for every ensemble algorithm [1, 2, 3, 4, 5, 6, 7, 8], however, only few of them are not heuristic procedures [9, 10].

References

  1. 1.
    Bertini, J.R., Jr. do Carmo Nicoletti, M.: An iterative boosting-based ensemble for streaming data classification. Information Fusion 45, 66–78 (2019)Google Scholar
  2. 2.
    Krawczyk, B., Cano, A.: Online ensemble learning with abstaining classifiers for drifting and noisy data streams. Appl. Soft Comput. 68, 677–692 (2018)CrossRefGoogle Scholar
  3. 3.
    Wozniak, M.: Accuracy based weighted aging ensemble (AB-WAE) algorithm for data stream classification. In: 2017 IEEE 4th International Conference on Soft Computing Machine Intelligence (ISCMI), pp. 21–24 (2017)Google Scholar
  4. 4.
    Minku, L.L., Yao, X.: DDD: a new ensemble approach for dealing with concept drift. IEEE Trans. Knowl. Data Eng. 24(4), 619–633 (2012)CrossRefGoogle Scholar
  5. 5.
    Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: an ensemble method for drifting concepts. J. Mach. Learn. Res. 8, 2755–2790 (2007)zbMATHGoogle Scholar
  6. 6.
    Nishida, K., Yamauchi, K., Omori, T.: Ace: adaptive classifiers-ensemble system for concept-drifting environments. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F.: (eds.) Multiple Classifier Systems. Lecture Notes in Computer Science vol. 3541, pp. 176–185, Springer, Berlin (2005)Google Scholar
  7. 7.
    Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’03, pp. 226–235. New York, NY, USA (2003)Google Scholar
  8. 8.
    Street, W.N., Kim, Y.: A streaming ensemble algorithm (sea) for large-scale classification. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’01, pp. 377–382. New York, NY, USA (2001)Google Scholar
  9. 9.
    Pietruczuk, L., Rutkowski, L., Jaworski, M., Duda, P.: How to adjust an ensemble size in stream data mining? Inf. Sci. 381, 46–54 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pietruczuk, L., Rutkowski, L., Jaworski, M., Duda, P.: A method for automatic adjustment of ensemble size in stream data mining. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 9–15 (2016)Google Scholar
  11. 11.
    van der Vaart, A.: Asymptotic Statistics. Cambridge University Press, New York (1998)Google Scholar
  12. 12.
    Rabbani, S.: Proof that the difference of two correlated normal random variables is normal. www.srabbani.com/bivariate.pdf
  13. 13.
    Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa: massive online analysis. J. Mach. Learn. Res. 11, 1601–1604 (2010)Google Scholar
  14. 14.
    Street W.N., Kim, Y.: A streaming ensemble algorithm (sea) for large-scale classification. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 377–382. ACM (2001)Google Scholar
  15. 15.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2012)Google Scholar
  16. 16.
    Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80 (2000)Google Scholar
  17. 17.
    Brzeziński, D., Stefanowski, J.: Reacting to different types of concept drift: the accuracy updated ensemble algorithm. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 81–94 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Leszek Rutkowski
    • 1
    • 2
    Email author
  • Maciej Jaworski
    • 1
  • Piotr Duda
    • 1
  1. 1.Institute of Computational IntelligenceCzestochowa University of TechnologyCzęstochowaPoland
  2. 2.Information Technology InstituteUniversity of Social SciencesLodzPoland

Personalised recommendations