Advertisement

Poly-lactic-Acid: Potential Material for Bio-printing Applications

  • Sunpreet SinghEmail author
  • Chander Prakash
  • Manjeet Singh
  • Guravtar Singh Mann
  • Munish Kumar Gupta
  • Rupinder Singh
  • Seeram Ramakrishna
Chapter

Abstract

Exclusive research efforts, made across the world, in the area of material science have resulted into development of a wide range of materials which could be successfully used for numerous biomedical applications. Poly-lactic-acid (PLA) is one of these developments which could be brought in direct contact of the tissues/organs, as a medical device and support structure. For the benefit of the research scholars, this chapter is structured to review the prospective biomedical implications of PLA material, explored in the last 20 years. Further, the efficacy of PLA with different types of three-dimensional printing (3DP) technologies, especially for fused deposition modeling, is also highlighted in response of the mechanical, biological, and topological characteristics of resulting parts. Further, the printing of waste natural fiber embedded PLA structures has experimented, as a case study, via fused deposition modeling.

Keywords

Biomedical Composites Fused deposition modeling Poly-lactic-acid Properties Three-dimensional printing Tissue engineering 

References

  1. 1.
    Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterial 21:2335–2346CrossRefGoogle Scholar
  2. 2.
    Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 34:455–482CrossRefGoogle Scholar
  3. 3.
    Yamane H, Sasai K (2003) Effect of the addition of poly(d-lactic acid) on the thermal property of poly(l-lactic acid). Polymer 44:2569–2575CrossRefGoogle Scholar
  4. 4.
    Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846CrossRefGoogle Scholar
  5. 5.
    Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 5(1):1–6PubMedGoogle Scholar
  6. 6.
    Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Maciel Filho R (2012) Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv 30(1):321–328PubMedCrossRefGoogle Scholar
  7. 7.
    Wang X, Jiang M, Zhou Z, Gou J, Hui D (2001) 3D printing of polymer matrix composites: a review and prospective. Compos B Eng 110:442–458CrossRefGoogle Scholar
  8. 8.
    Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 42(4):856–873CrossRefGoogle Scholar
  9. 9.
    Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224CrossRefGoogle Scholar
  10. 10.
    Faludi G, Dora G, Renner K, Móczó J, Pukánszky B (2013) Biocomposite from polylactic acid and lignocellulosic fibers: structure–property correlations. Carbohyd Polym 92(2):1767–1775CrossRefGoogle Scholar
  11. 11.
    Cui Y, Liu Y, Cui Y, Jing X, Zhang P, Chen X (2009) The nanocomposite scaffold of poly (lactide-co-glycolide) and hydroxyapatite surface-grafted with l-lactic acid oligomer for bone repair. Acta Biomater 5(7):2680–2692PubMedCrossRefGoogle Scholar
  12. 12.
    Yun YP, Kim SE, Lee JB, Heo DN, Bae MS, Shin DR, Lim SB, Choi KK, Park SJ, Kwon IK (2009) Original paper: comparison of osteogenic differentiation from adipose-derived stem cells, mesenchymal stem cells, and pulp cells on PLGA/hydroxyapatite nanofiber. Tissue Eng Regenerat Med 6(1):336–345 Google Scholar
  13. 13.
    Sanders JE, Bale SD, Neumann T (2002) Tissue response to microfibers of different polymers: polyester, polyethylene, polylactic acid and polyurethane. J Biomed Mater Res 62:222–227PubMedCrossRefGoogle Scholar
  14. 14.
    Kellomaki M, Niiranen H, Puumanen K, Ashammakhi N, Waris T, TormaLa P (2000) Bioabsorbable scaffolds for guided bone regeneration and degeneration. Biomaterials 21:2495–2505PubMedCrossRefGoogle Scholar
  15. 15.
    Hoveizi E, Nabiuni M, Parivar K, Rajabi-Zeleti S, Tavakol S (2014) Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering. Cell Biol Int 38(1):41–49PubMedCrossRefGoogle Scholar
  16. 16.
    Avital S, Bollinger TJ, Wilkinson JD, Marchetti F, Hellinger MD, Sands LR (2005) Preventing intra-abdominal adhesions with polylactic acid film: an animal study. Dis Colon Rectum 48(1):153–157PubMedCrossRefGoogle Scholar
  17. 17.
    Li G, Wang Z-X, Fu W-J, Hong B-F, Wang X-X, Cao L, Xu F-Q, Song Q, Cui F-Z, Zhang X (2011) Introduction to biodegradable polylactic acid ureteral stent application for treatment of ureteral war injury. BJU Int 108:901–906PubMedGoogle Scholar
  18. 18.
    Qin Y, Yuan M, Li L, Guo S, Yuan M, Li W, Xue J (2006) Use of polylactic acid/polytrimethylene carbonate blends membrane to prevent postoperative adhesions. J Biomed Mater Res Part B Appl Biomater Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 79(2):312–319 CrossRefGoogle Scholar
  19. 19.
    Mi HY, Salick MR, Jing X, Jacques BR, Crone WC, Peng XF, Turng LS (2013) Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater Sci Eng C 33(8):4767–4776CrossRefGoogle Scholar
  20. 20.
    Kang SW, Jeon O, Kim BS (2005) Poly (lactic-co-glycolic acid) microspheres as an injectable scaffold for cartilage tissue engineering. Tissue Eng 11(3–4):438–447PubMedCrossRefGoogle Scholar
  21. 21.
    Chen C, Lv G, Pan C, Song M, Wu C, Guo D, Wang X, Chen B, Gu Z (2007) Poly (lactic acid) (PLA) based nanocomposites—a novel way of drug-releasing. Biomed Mater 2(4):L1PubMedCrossRefGoogle Scholar
  22. 22.
    Gollwitzer H, Ibrahim K, Meyer H, Mittelmeier W, Busch R, Stemberger A (2003) Antibacterial poly (d, l-lactic acid) coating of medical implants using a biodegradable drug delivery technology. J Antimicrob Chemother 51(3):585–591PubMedCrossRefGoogle Scholar
  23. 23.
    Rancan F, Papakostas D, Hadam S, Hackbarth S, Delair T, Primard C, Verrier B, Sterry W, Blume-Peytavi U, Vogt A (2009) Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm Res 26(8):2027–2036PubMedCrossRefGoogle Scholar
  24. 24.
    Polimeni G, Koo KT, Pringle GA, Agelan A, Safadi FF, Wikesjö UM (2008) Histopathological observations of a polylactic acid-based device intended for guided bone/tissue regeneration. Clin Implant Dent Relat Res 10(2):99–105PubMedCrossRefGoogle Scholar
  25. 25.
    Mohiti-Asli M, Saha S, Murphy SV, Gracz H, Pourdeyhimi B, Atala A, Loboa EG (2017) Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo. J Biomed Mater Res B Appl Biomater 105(2):327–339PubMedCrossRefGoogle Scholar
  26. 26.
    Zhao C, Wu H, Ni J, Zhang S, Zhang X (2017) Development of PLA/Mg composite for orthopedic implant: tunable degradation and enhanced mineralization. Compos Sci Technol 28(147):8–15CrossRefGoogle Scholar
  27. 27.
    Van Sliedregt A, Radder AM, De Groot K, Van Blitterswijk CA (1992) In vitro biocompatibility testing of polylactides part I proliferation of different cell types. J Mater Sci Mater Med 3(5):365–370CrossRefGoogle Scholar
  28. 28.
    Majola A, Vainionpää S, Vihtonen K, Mero M, Vasenius J, Törmälä P, Rokkanen P (1991) Absorption, biocompatibility, and fixation properties of polylactic acid in bone tissue: an experimental study in rats. Clin Orthop Relat Res 268:260–269Google Scholar
  29. 29.
    Böstman O, Hirvensalo E, Vainionpää S, Mäkelä A, Vihtonen K, Törmälä P, Rokkanen P (1989) Ankle fractures treated using biodegradable internal fixation. Clin Orthop Relat Res 238:195–203CrossRefGoogle Scholar
  30. 30.
    Maurus PB, Kaeding CC (2004) Bioabsorbable implant material review. Oper Techn Sports Med 12(3):158–160CrossRefGoogle Scholar
  31. 31.
    Hartmann MH (1998) High molecular weight polylactic acid polymers. In: Biopolymers from renewable resources. Springer, Berlin, pp 367–411Google Scholar
  32. 32.
    Ma PX, Zhang R, Xiao G, Franceschi R (2001) Engineering new bone tissue in vitro on highly porous poly (α-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res Off J Soc Biomater Jpn Soc Biomater 54(2):284–293CrossRefGoogle Scholar
  33. 33.
    Goswami J, Bhatnagar N, Mohanty S, Ghosh AK (2013) Processing and characterization of poly (lactic acid) based bioactive composites for biomedical scaffold application. Exp Polym Lett 7(9):767–777CrossRefGoogle Scholar
  34. 34.
    Chen X, Li Y, Gu N (2010) A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair. Biomed Mater 5(4):044104PubMedCrossRefGoogle Scholar
  35. 35.
    Saito N, Takaoka K (2003) New synthetic biodegradable polymers as BMP carriers for bone tissue engineering. Biomaterialsm 24(13):2287–2293CrossRefGoogle Scholar
  36. 36.
    Murakami N, Saito N, Horiuchi H, Okada T, Nozaki K, Takaoka K (2002) Repair of segmental defects in rabbit humeri with titanium fiber mesh cylinders containing recombinant human bone morphogenetic protein-2 (rhBMP-2) and a synthetic polymer. J Biomed Mater Res Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 62(2):169–174Google Scholar
  37. 37.
    Zhang Q, Mochalin VN, Neitzel I, Knoke IY, Han J, Klug CA, Zhou JG, Lelkes PI, Gogotsi Y (2011) Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials 32(1):87–94PubMedCrossRefGoogle Scholar
  38. 38.
    Barber FA, Elrod BF, McGuire DA, Paulos LE (1995) Preliminary results of an absorbable interference screw. Arthroscopy 11(5):537–548PubMedCrossRefGoogle Scholar
  39. 39.
    Matsusue Y, Nakamura T, Suzuki S, Iwasaki R (1996) Biodegradable pin fixation of osteochondral fragments of the knee. Clin Orthop Relat Res 322:166–173CrossRefGoogle Scholar
  40. 40.
    Stähelin AC, Weiler A, Rüfenacht H, Hoffmann R, Geissmann A, Feinstein R (1997) Clinical degradation and biocompatibility of different bioabsorbable interference screws: a report of six cases. Arthroscopy 13(2):238–244PubMedCrossRefGoogle Scholar
  41. 41.
    Lavery LA, Higgins KR, Ashry HR, Athanasiou KA (1994) Mechanical characteristics of poly-l-lactic acid absorbable screws and stainless steel screws in basilar osteotomies of the first metatarsal. J Foot Ankle Surg Off Publ Am Coll Foot Ankle Surg 33(3):249–254Google Scholar
  42. 42.
    Bucholz RW, Henry S, Henley BM (1994) Fixation with bioabsorbable screws for the treatment of fractures of the ankle. JBJS 76(3):319–324CrossRefGoogle Scholar
  43. 43.
    Casteleyn PP, Handelberg F, Haentjens P (1992) Biodegradable rods versus Kirschner wire fixation of wrist fractures. A randomised trial. J Bone Joint Surg Br 74(6):858–861PubMedCrossRefGoogle Scholar
  44. 44.
    Hope PG, Williamson DM, Coates CJ, Cole WG (1991) Biodegradable pin fixation of elbow fractures in children. A randomised trial. J Bone Joint Surg Br 73(6):965–968PubMedCrossRefGoogle Scholar
  45. 45.
    Haers PE, Suuronen R, Lindqvist C, Sailer H (1998) Biodegradable polylactide plates and screws in orthognathic surgery. J Craniomaxillofac Surg 26(2):87–91PubMedCrossRefGoogle Scholar
  46. 46.
    Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohyd Polym 82(2):227–232CrossRefGoogle Scholar
  47. 47.
    Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Tamura H, Jayakumar R (2009) Electrospinning of carboxymethyl chitin/poly (vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohyd Polym 77(4):863–869CrossRefGoogle Scholar
  48. 48.
    Onuh SO, Yusuf YY (1999) Rapid prototyping technology: applications and benefits for rapid product development. J Intell Manuf 10(3–4):301–311CrossRefGoogle Scholar
  49. 49.
    Yang S, Leong K-F, Du Z, Chua C-K (2002) The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8:1–11.  https://doi.org/10.1089/107632702753503009PubMedCrossRefGoogle Scholar
  50. 50.
    Garg A, Tai K, Lee CH, Savalani MM (2013) A hybrid M5-genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling of FDM process. J Intell Manuf  https://doi.org/10.1007/s10845-013-0734-1
  51. 51.
    Yan X, Gu P (1996) A review of rapid prototyping technologies and systems. Comput Des 28:307–318.  https://doi.org/10.1016/0010-4485(95)00035-6CrossRefGoogle Scholar
  52. 52.
    Pham DT, Gault RS (1998) A comparison of rapid prototyping technologies. Int J Mach Tools Manuf 38:1257–1287.  https://doi.org/10.1016/S0890-6955(97)00137-5CrossRefGoogle Scholar
  53. 53.
    Sugavaneswaran M, Arumaikkannu G (2014) Modelling for randomly oriented multi material additive manufacturing component and its fabrication. Mater Des 54:779–785.  https://doi.org/10.1016/j.matdes.2013.08.102CrossRefGoogle Scholar
  54. 54.
    Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7(6):679–689PubMedCrossRefGoogle Scholar
  55. 55.
    Rankin TM, Giovinco NA, Cucher DJ, Watts G, Hurwitz B, Armstrong DG (2014) Three-dimensional printing surgical instruments: are we there yet? J Surg Res 189(2):193–197PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Mattana G, Briand D, Marette A, Quintero AV, de Rooij NF (2015) Polylactic acid as a biodegradable material for all-solution-processed organic electronic devices. Org Electron 17:77–86CrossRefGoogle Scholar
  57. 57.
    Ge Z, Wang L, Heng BC, Tian XF, Lu K, Tai Weng Fan V, Yeo JF, Cao T, Tan E (2009) Proliferation and differentiation of human osteoblasts within 3D printed poly-lactic-co-glycolic acid scaffolds. J Biomater Appl 23(6):533–547CrossRefGoogle Scholar
  58. 58.
    Serra T, Planell JA, Navarro M (2013) High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater 9(3):5521–5530PubMedCrossRefGoogle Scholar
  59. 59.
    Esposito Corcione C, Gervaso F, Scalera F, Montagna F, Sannino A, Maffezzoli A (2017) The feasibility of printing polylactic acid–nanohydroxyapatite composites using a low-cost fused deposition modeling 3D printer. J Appl Polym Sci 134(13):44656Google Scholar
  60. 60.
    Zhang H, Mao X, Du Z, Jiang W, Han X, Zhao D, Han D, Li Q (2016) Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. Sci Technol Adv Mater 17(1):136–148PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kao CT, Lin CC, Chen YW, Yeh CH, Fang HY, Shie MY (2015) Poly (dopamine) coating of 3D printed poly (lactic acid) scaffolds for bone tissue engineering. Mater Sci Eng, C 56:165–173CrossRefGoogle Scholar
  62. 62.
    Lin CC, Ho CC (2005) Micropatterning proteins and cells on polylactic acid and poly (lactide-co-glycolide). Biomaterials 26(17):3655–3662PubMedCrossRefGoogle Scholar
  63. 63.
    Wang M, Favi P, Cheng X, Golshan NH, Ziemer KS, Keidar M, Webster TJ (2016) Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta Biomater 46:256–265PubMedCrossRefGoogle Scholar
  64. 64.
    Senatov FS, Niaza KV, Zadorozhnyy MY, Maksimkin AV, Kaloshkin SD, Estrin YZ (2016) Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater 57:139–148PubMedCrossRefGoogle Scholar
  65. 65.
    Castilho M, Moseke C, Ewald A, Gbureck U, Groll J, Pires I, Teßmar J, Vorndran E (2014) Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication 6(1):015006PubMedCrossRefGoogle Scholar
  66. 66.
    Almeida CR, Serra T, Oliveira MI, Planell JA, Barbosa MA, Navarro M (2014) Impact of 3-D printed PLA-and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater 10(2):613–622PubMedCrossRefGoogle Scholar
  67. 67.
    Shaffer S, Yang K, Vargas J, Di Prima MA, Voit W (2014) On reducing anisotropy in 3D printed polymers via ionizing radiation. Polymer 55(23):5969–5979CrossRefGoogle Scholar
  68. 68.
    Sandler N, Salmela I, Fallarero A, Rosling A, Khajeheian M, Kolakovic R, Genina N, Nyman J, Vuorela P (2014) Towards fabrication of 3D printed medical devices to prevent biofilm formation. Int J Pharm 459(1–2):62–64PubMedCrossRefGoogle Scholar
  69. 69.
    Narayanan LK, Huebner P, Fisher MB, Spang JT, Starly B, Shirwaiker RA (2016) 3D-bioprinting of polylactic acid (PLA) nanofiber–alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater Sci Eng 2(10):1732–1742CrossRefGoogle Scholar
  70. 70.
    Tiersch TR, Monroe WT (2016) Three-dimensional printing with polylactic acid (PLA) thermoplastic offers new opportunities for cryobiology. Cryobiology 73(3):396–398PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Yeon YK, Park HS, Lee JM, Lee JS, Lee YJ, Sultan MT, Seo YB, Lee OJ, Kim SH, Park CH (2018) New concept of 3D printed bone clip (polylactic acid/hydroxyapatite/silk composite) for internal fixation of bone fractures. J Biomater Sci Polym Ed 29(7–9):894–906PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sunpreet Singh
    • 1
    Email author
  • Chander Prakash
    • 1
  • Manjeet Singh
    • 1
  • Guravtar Singh Mann
    • 1
  • Munish Kumar Gupta
    • 2
    • 3
  • Rupinder Singh
    • 4
  • Seeram Ramakrishna
    • 5
  1. 1.Mechanical EngineeringLovely Professional UniversityPhagwaraIndia
  2. 2.Mechanical EngineeringNational Institute of TechnologyHamirpurIndia
  3. 3.Mechanical EngineeringLudhiana College of Engineering and TechnologyLudhianaIndia
  4. 4.Production EngineeringGuru Nanak Dev Engineering CollegeLudhianaIndia
  5. 5.Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations