Reflectance Computation for a Specular Only V-Cavity

  • Dorian Saint-PierreEmail author
  • Lionel Simonot
  • Mathieu Hébert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11418)


The color of a surface structured at the mesoscopic scale differs from the one of a flat surface of the same material because of the light interreflections taking place in the concavities of the surface, as well as the shadowing effect. The color variation depends not only on the surface topology but also on the spectral reflectance of the material, its matte or glossy finishing, and the angular distribution of the incident light. For an accurate prediction of the radiance perceived from each point of the object by an observer or a camera, we must take into account comprehensively the multiple paths of light which can be reflected, scattered or absorbed by the material and its surface. In this paper, we focus on the light reflection component due to the material-air interface, in the special case of a surface structured with parallel, periodical, specular V-shaped ridges, illuminated either by collimated light from any direction of the hemisphere, or by diffuse light. Thanks to an analytical model, we compute the radiance reflected in every direction of the hemisphere by accounting for the different interreflections, according to the angular reflectance of the panels and the aperture angle of the cavity. We can then deduce the apparent reflectance of the cavity when viewed from a large distance.


Surface reflection Light interreflections Reflectance model 


  1. 1.
    Kinoshita, S., Yoshioka, S., Miyazaki, J.: Physics of structural colors. Rep. Prog. Phys. 71, 076401 (2008)CrossRefGoogle Scholar
  2. 2.
    Charrière, R., Lacaille, G., Pedeferri, M., Faucheu, J., Delafosse, D.: Characterization of the gonioapparent character of colored anodized titanium surfaces. Color Res. Appl. 40(5), 483–490 (2015)CrossRefGoogle Scholar
  3. 3.
    Kubelka, P.: New contributions to the optics of intensely light-scattering material. Part I. J. Opt. Soc. Am. A 38, 448–457 (1948)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Melamed, N.T.: Optical properties of powders: Part I. optical absorption coefficients and the absolute value of the diffuse reflectance. J. Appl. Phys. 34, 560–570 (1963)CrossRefGoogle Scholar
  5. 5.
    Chandrasekhar, S.: Radiative Transfer. Dover, Illinois (1960)zbMATHGoogle Scholar
  6. 6.
    van de Hulst, H.C.: Light Scattering by Small Particles, pp. 200–227. Dover, Illinois (1981)Google Scholar
  7. 7.
    Beckmann, P., Spizzichino, A.: The Scattering of Electromagnetic Waves from Rough Surfaces, pp. 70–98. MA Artech House Inc, Norwood (1963)zbMATHGoogle Scholar
  8. 8.
    Torrance, K.E., Sparrow, E.M.: Theory for off-specular reflection from roughened surfaces. J. Opt. Soc. Am. 57(9), 1105–1114 (1967)CrossRefGoogle Scholar
  9. 9.
    Heitz, E., Hanika, J., d’Eon, E., Dachsbacher, C.: Multiple-scattering microfacet BSDFs with the Smith model. ACM Trans. Graph. 35(4) (2016). Proceedings of the SIGGRAPH 2016. Article 58Google Scholar
  10. 10.
    Lee, J.H., Jarabo, A., Jeon, D.S., Gutierrez, D., Kim, M.H.: Practical multiple scattering for rough surfaces. In: SIGGRAPH Asia 2018 Technical Papers, p. 275. ACM (2018)Google Scholar
  11. 11.
    Xie, F., Hanrahan, P.: Multiple scattering from distributions of specular v-grooves. In: ACM SIGGRAPH Asia, p. 276 (2018)Google Scholar
  12. 12.
    Kubelka, P.: New contributions to the optics of intensely light-scattering materials. Part II: non homogeneous layers. J. Opt. Soc. Am. A 44, 330–335 (1954)CrossRefGoogle Scholar
  13. 13.
    Simonot, L., Hébert, M., Hersch, R.D.: Extension of the Williams-Clapper model to stacked nondiffusing colored coatings with different refractive indices. J. Opt. Soc. Am. A 23, 1432–1441 (2006)CrossRefGoogle Scholar
  14. 14.
    Hébert, M., Hersch, R.D., Becker, J.-M.: Compositional reflectance and transmittance model for multilayer specimens. J. Opt. Soc. Am. A 24, 2628–2644 (2007)CrossRefGoogle Scholar
  15. 15.
    Emmel, P., Hersch, R.D.: A unified model for color prediction of halftoned prints. J. Im. Sci. Technol. 44(4), 351–359 (2000)Google Scholar
  16. 16.
    Clapper, F.R., Yule, J.A.C.: The effect of multiple internal reflections on the densities of halftone prints on paper. J. Opt. Soc. Am. 43, 600–603 (1953)CrossRefGoogle Scholar
  17. 17.
    Yule, J.A.C., Nielsen, W.J.: The penetration of light into paper and its effect on halftone reproductions. In: Proceedings of the TAGA, vol. 3, pp. 65–76 (1951)Google Scholar
  18. 18.
    Rogers, G.: Effect of light scatter on halftone color. J. Opt. Soc. Am. A 15, 1813–1821 (1998)CrossRefGoogle Scholar
  19. 19.
    Rogers, G.: A generalized clapper-yule model of halftone reflectance. Color Res. Appl. 25, 402–407 (2000)CrossRefGoogle Scholar
  20. 20.
    Saint-Pierre, D., Deeb, R., Muselet, D., Simonot, L., Hébert,M.: Light interreflections and shadowing effects in a Lambertian V-cavity under diffuse illumination. In: IS&T Electronic Imaging Symposium, Material Appearance, Burlingame, USA, 29 January–2 February 2018Google Scholar
  21. 21.
    Deeb, R., Muselet, D., Hebert, M., Trémeau, A.: Spectral reflectance estimation from one RGB image using self-interreflections in a concave object. Appl. Opt. 57(17), 4918–4929 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dorian Saint-Pierre
    • 1
    Email author
  • Lionel Simonot
    • 1
    • 2
  • Mathieu Hébert
    • 1
  1. 1.Université de Lyon, UJM-Saint-Etienne, CNRS, Institut D’Optique Graduate School, Laboratoire Hubert Curien UMR 5516Saint-EtienneFrance
  2. 2.Université de Poitiers, Institut Prime UPR CNRS 3346, Futuroscope ChasseneuilPoitiersFrance

Personalised recommendations