Advertisement

Using the Monge-Kantorovitch Transform in Chromagenic Color Constancy for Pathophysiology

  • Ghalia HemritEmail author
  • Futa Matsushita
  • Mihiro Uchida
  • Javier Vazquez-Corral
  • Han Gong
  • Norimichi Tsumura
  • Graham D. Finlayson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11418)

Abstract

The Chromagenic color constancy algorithm estimates the light color given two images of the same scene, one filtered and one unfiltered. The key insight underpinning the chromagenic method is that the filtered and unfiltered images are linearly related and that this linear relationship correlates strongly with the illuminant color. In the original method the best linear relationship was found based on the assumption that the filtered and unfiltered images were registered. Generally, this is not the case and implies an expensive image registration step.

This paper makes three contributions. First, we use the Monge-Kantorovich (MK) method to find the best linear transform without the need for image registration. Second, we apply this method on chromagenic pairs of facial images (used for Kampo pathophysiology diagnosis). Lastly, we show that the MK method supports better color correction compared with solving for a 3 \(\times \) 3 correction matrix using the least squares linear regression method when the images are not registered.

Keywords

Color constancy Chromagenic computer vision 

References

  1. 1.
    Pitie, F., Kokaram, A.: The linear Monge-Kantorovitch linear colour mapping for example-based colour transfer. In: IET 4th European Conference on Visual Media Production, pp. 23–23 (2007)Google Scholar
  2. 2.
    Matsushita, F., Kiyomitsu, K., Ogawa, K., Tsumura, N.: System for evaluating pathophysiology using facial image. In: Color and Imaging Conference, pp. 274–279 (2017)Google Scholar
  3. 3.
    Finlayson, G.D., Fredembach, C., Drew, M.S.: Detecting illumination in images. In: IEEE 11th International Conference on Computer Vision (2007)Google Scholar
  4. 4.
    Finlayson, G.D., Hordley, S.D., Morovic, P.: Colour constancy using the chromagenic constraint. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1079–1086 (2005)Google Scholar
  5. 5.
    Fredembach, C., Finlayson, G.D.: The bright-chromagenic algorithm for illuminant estimation. J. Imaging Sci. Technol. 52, 137–142 (2008)CrossRefGoogle Scholar
  6. 6.
    Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21, 977–1000 (2003)CrossRefGoogle Scholar
  7. 7.
    Finlayson, G.D., Hordley, S., Morovic, P.: Chromagenic filter design. In: 10th Annual Congress of the International Colour Association, pp. 1023–1026 (2005)Google Scholar
  8. 8.
    Ciurea, F., Funt, B.V.: A large image database for color constancy research. In: Color and Imaging Conference, pp. 160–164 (2003)Google Scholar
  9. 9.
    Gijsenij, A., Gevers, T., Van De Weijer, J.: Computational color constancy: survey and experiments. IEEE Trans. Image Process. 20, 2475–2489 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hemrit, G., et al.: Rehabilitating the ColorChecker dataset for illuminant estimation. In: Color and Imaging Conference, pp. 350–353 (2018)CrossRefGoogle Scholar
  11. 11.
    Samal, A., Iyengar, P.A.: Automatic recognition and analysis of human faces and facial expressions: a survey. Patt. Recognit. 25, 65–77 (1992)CrossRefGoogle Scholar
  12. 12.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38, 1–45 (2006)CrossRefGoogle Scholar
  13. 13.
    Li, L.J., Socher, R., Fei-Fei, L.: Towards total scene understanding: classification, annotation and segmentation in an automatic framework. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2036–2043 (2009)Google Scholar
  14. 14.
    Buchsbaum, G.: A Spatial processor model for object colour perception. J. Franklin Inst. 310, 1–26 (1980)CrossRefGoogle Scholar
  15. 15.
    Land, E.H., McCann, J.J.: Lightness and retinex theory. J. Opt. Soc. Am. 61, 1–11 (1971)CrossRefGoogle Scholar
  16. 16.
    Finlayson, G.D., Trezzi, E.: Shades of gray and colour constancy. In: Color and Imaging Conference, pp. 37–41 (2004)Google Scholar
  17. 17.
    Vazquez-Corral, J., Vanrell, M., Baldrich, R., Tous, F.: Color constancy by category correlation. IEEE Trans. Image Process. 21, 1997–2007 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gehler, P.V., Rother, C., Blake, A., Minka, T., Sharp, T.: Bayesian color constancy revisited. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  19. 19.
    Gijsenij, A., Gevers, T.: Color constancy using natural image statistics. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  20. 20.
    Bianco, S., Cusano, C., Schettini, R.: Color constancy using CNNs. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 81–89 (2015)Google Scholar
  21. 21.
    Barron, J.T., Tsai, Y.-T.: Fast fourier color constancy. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)Google Scholar
  22. 22.
    Tan, R.T., Nishino, K., Ikeuchi, K.: Color constancy through inverse-intensity chromaticity space. J. Opt. Soc. Am. A. 21, 321–334 (2004)CrossRefGoogle Scholar
  23. 23.
    Tsumura, N., et al.: Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin. ACM Trans. Graph. 22, 770–779 (2003)CrossRefGoogle Scholar
  24. 24.
    Ojima, N., Minami, T., Kawai, M.: Transmittance measurement of cosmetic layer applied on skin by using processing. In: 3rd Scientific Conference of the Asian Societies of Cosmetic Scientists, p. 114 (1997)Google Scholar
  25. 25.
    Sato, Y., Hanawa, T., Arai, M., Cyong, J.C., Fukuzawa, M., M.K.: Introduction to Kampo: Japanese traditional medicine. Japan Soc. Orient. Med. (2005)Google Scholar
  26. 26.
    Rubner, Y., Tomasi, C.: The Earth mover’s distance. Percept, Metrics Image Database Navig (2001)Google Scholar
  27. 27.
    Rubner, Y., Tomasi, C., Guibas, L.J.: Earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40, 99–121 (2000)CrossRefGoogle Scholar
  28. 28.
    Vasershtein, L.N.: Probl. Pered. Inform. 5, 64 (1969)Google Scholar
  29. 29.
    Dantzig, G.B., Orden, A., Wolfe, P.: Generalized simplex method for minimizing a linear form under linear inequality restraints. Pac. J. Math. 5, 183–195 (1955)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Ratnasingam, S., Hernández-Andrés, J.: Illuminant spectrum estimation at a pixel. J. Opt. Soc. Am. A. 28, 696–703 (2011)CrossRefGoogle Scholar
  31. 31.
    Ratnasingam, S., Collins, S., Hernández-Andrés, J.: Optimum sensors for color constancy in scenes illuminated by daylight. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 27, 2198–2207 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ghalia Hemrit
    • 1
    Email author
  • Futa Matsushita
    • 2
  • Mihiro Uchida
    • 2
  • Javier Vazquez-Corral
    • 1
  • Han Gong
    • 1
  • Norimichi Tsumura
    • 2
  • Graham D. Finlayson
    • 1
  1. 1.University of East AngliaNorwichUK
  2. 2.Chiba UniversityChibaJapan

Personalised recommendations