Advertisement

Phycoremediation of Persistent Organic Pollutants from Wastewater: Retrospect and Prospects

  • Ashutosh Pandey
  • Manish Pratap Singh
  • Sanjay Kumar
  • Sameer SrivastavaEmail author
Chapter

Abstract

Persistent organic pollutants (POPs) are the most widespread pollutants having toxicity, mutagenicity, and carcinogenicity. Countless amounts of POPs are introduced into our environment as an outcome of myriads of anthropogenic activities. Pollution caused by POPs is a severe problem throughout the world. To solve the problem, extensive research efforts have been focused worldwide to implement sustainable technologies for the treatment of POPs present in the environment. There are various chemical and biological remediation methods which are well documented and are in practice for removal of diverse forms of POPs from soil and aquatic system. Microbial remediation process is an economical way to remediate POPs as compared to the chemical process and has been studied well over a period of more than three decades. Recently, interest has gathered in phycoremediation of POPs into harmless organic pollutants, which are adaptive, ubiquitous, and thriving in different ecosystems. The objective of this chapter is to review and discuss the bioremediating and biodegradative competencies of microalgae on persistent organic pollutants, viz., PAHs, PCBs, pesticides, OCPs, phenolics, PHCs, and antibiotics. This chapter will concisely incorporate studies which have examined and scrutinized the oxidation, transformation, and accumulation of these compounds by algal species. A detailed analysis of the molecular mechanisms involved in bioremediation and biotransformation of POPs has also been reviewed. the limitations and various approaches to enhance phycoremediation and its perspective are discussed in detail.

Keywords

Persistent organic pollutant Pycoremediation Algae 

Abbreviations

2,4-DNP

2,4-dinitrophenol

ARISA

Automated ribosomal intergenic spacer analysis

B[k]F

Benzo[k] fluoranthene

BaA

Benzo[a] anthracene

BaF

Benzo[b] fluoranthene

BGA

Blue-green algae

BghiP

Benzo[g,h,i] erylene

BPA

Bisphenol A

DDT

Dichlorodiphenyltrichloroethane

DGEG

Denaturing gradient gel electrophoresis

DNA

Deoxyribonucleic acid

EDCs

Endocrine disruptors

EE2

17-α- Ethinylestradiol

FISH

Fluorescent in situ hybridization

Fla.

Fluoranthene

HAB

Harmful algal bloom

HMW-PAH

High molecular weight polycyclic aromatic hydrocarbon

LH-PCR

Length Heterogeneity Polymerase Chain Reaction

LMW-PAH

Low molecular weight polycyclic aromatic hydrocarbon

LTRR

Long tandemly repeated repetitive

OC

Organochlorine

OP

4-Octylphenol

PAH

Polycyclic aromatic hydrocarbon

PCB

Polychlorinated biphenyls

PCR

Polymerase chain reaction

PHC

Petroleum hydrocarbon

Phe

Phenanthrene

PNP

Poly-nitrophenol

POP

Persistent organic pollutants

PS I, II

Photosystem I, II

Pyr

Pyrene

RAPD

Random Amplification of Polymorphic DNA

RFLP

Restriction Fragment Length Polymorphism

RNA

Ribonucleic acid

SSCP

Single-strand conformation polymorphism

STRR

Short tandemly repeated repetitive

Notes

Acknowledgment

Authors (A.P. and M.P.S.) would like to give their sincere thanks to Ministry of Human Resource Development (MHRD), New Delhi (India), for the financial support.

References

  1. Abou-Shanab RAI (2011) Bioremediation: new approaches and trends. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal-contaminated soils, vol 20., Environmental pollution. Springer, DordrechtCrossRefGoogle Scholar
  2. Aken BV, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776CrossRefGoogle Scholar
  3. Andrate MR, Costa JAV (2007) Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture 264:130–134CrossRefGoogle Scholar
  4. Aoki Y (2001) Polychlorinated biphenyls, polychloronated dibenzo-p-dioxins, and polychlorinated dibenzofurans as endocrine disrupters—what we have learned from Yusho disease. Environ Res 86(1):2–11CrossRefGoogle Scholar
  5. Arienzo M, Masuccio AA, Ferrara L (2013) Evaluation of sediment contamination by heavy metals, organochlorinated pesticides, and polycyclic aromatic hydrocarbons in the Berre coastal lagoon (Southeast France). Arch Environ Contam Toxicol 65(3):396–406CrossRefGoogle Scholar
  6. Ashton D, Hilton M, Thomas KV (2004) Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci Total Environ 333(1–3):167–184CrossRefGoogle Scholar
  7. Bachmann R, Johnson A, Edyvean R (2014) Biotechnology in the petroleum industry: an overview. Int Biodeterior Biodegradation 86:225–237CrossRefGoogle Scholar
  8. Bahadar H, Mostafalou S, Abdollahi M (2014) Current understandings and perspectives on non-cancer health effects of benzene: a global concern. Toxicol Appl Pharmacol 276(2):83–94CrossRefGoogle Scholar
  9. Baker JA, Entsch B, Neilan BA, McKay DB (2002) Monitoring changing toxigenicity of a cyanobacterial bloom by molecular methods. Appl Environ Microbiol 68(12):6070–6076CrossRefGoogle Scholar
  10. Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80(7):723–736CrossRefGoogle Scholar
  11. Barton JW, Kuritz T, O’Connor LE, Ma CY, Maskarinec MP, Davison BH (2004) Reductive transformation of methyl parathion by the cyanobacterium Anabaena sp. strain PCC7120. Appl Microbiol Biotechnol 65(3):330–335CrossRefGoogle Scholar
  12. Ben Chekroun K, Moumen A, Rezzoum N, Sanchez E, Baghour M (2013) Role of macroalgae in biomonitoring of pollution in ‘Marchica’, the Nador lagoon. Phyton 82:31–34Google Scholar
  13. Bergman B, Matveyev A, Rasmussen U (1996) Chemical signalling in cyanobacterial-plant symbioses. Trends Plant Sci 1(6):191–197CrossRefGoogle Scholar
  14. Bilanovic D, Andargatchew A, Kroeger T, Shelef G (2009) Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations-response surface methodology analysis. Energy Convers Manag 50(2):262–267CrossRefGoogle Scholar
  15. Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD (2015) 2015. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 46(1):7–21CrossRefGoogle Scholar
  16. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321CrossRefGoogle Scholar
  17. Boxall ABA (2004) The environmental side effects of medication. EMBO Rep 5(12):1110–1116CrossRefGoogle Scholar
  18. Boxall ABA, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley JP, Verslycke T, Ankley GT, Beazley KF, Belanger SE, Berninger JP, Carriquiriborde P, Coors A, DeLeo PC, Dyer SD, Ericson JF, Gagné F, Giesy JP, Gouin T, Hallstrom L, Karlsson MV, Larsson DGJ, Lazorchak JM, Mastrocco F, McLaughlin A, McMaster ME, Meyerhoff RD, Moore R, Parrott JL, Snape JR, Murray-Smith R, Servos MR, Sibley PK, Straub JO, Szabo ND, Topp E, Tetreault GR, Trudeau VL, Van Der Kraak G (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120(9):1221–1229CrossRefGoogle Scholar
  19. Cáceres T, Megharaj M, Naidu R (2008) Toxicity and transformation of fenamiphos and its metabolites by two micro algae Pseudokirchneriella subcapitata and Chlorococcum sp. Sci Total Environ 398:53–59CrossRefGoogle Scholar
  20. Castiglioni B, Rizzi E, Frosini A, Sivonen K, Rajaniemi P, Rantala A, Mugnai MA, Ventura S, Wilmotte A, Boutte C, Grubisic S, Balthasart P, Consolandi C, Bordoni R, Mezzelani A, Battaglia C, De Bellis G (2004) Development of a universal microarray based on the ligation detection reaction and 16S rrna gene polymorphism to target diversity of cyanobacteria. Appl Environ Microbiol 70(12):7161–7172CrossRefGoogle Scholar
  21. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368CrossRefGoogle Scholar
  22. Cerniglia CE, van Baalen C, Gibson DT (1980) Metabolism of naphthalene by the cyanobacterium Oscillatoria sp., strain JCM. J Gen Microbiol 116:485–494Google Scholar
  23. Cerniglia CE, Gibson DT, van Baalen C (1982) Naphthalene metabolism by diatoms from the Kachemak Bay region of Alaska. J Gen Microbiol 128:987–990Google Scholar
  24. Chan SMN, Luan T, Wong MH, Tam NFY (2006) Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environ Toxicol Chem 25:1772–1779CrossRefGoogle Scholar
  25. Cheng Y, Zhou W, Gao C, Lan K, Gao Y, Wu Q (2009) Biodiesel production from Jerusalem artichoke (Helianthus tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84:777–781CrossRefGoogle Scholar
  26. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:249–306Google Scholar
  27. Couto RM, Simões PC, Reis A, Da Silva TL, Martins VH, Sánchez-Vicente Y (2010) Supercritical fluid extraction of lipids from the heterotrophic microalga Crypthecodiniumcohnii. Eng Life Sci 10:158–164Google Scholar
  28. Crain DA, Eriksen M, Iguchi T, Jobling S, Laufer H, LeBlanc GA, Guillette LJ (2007) An ecological assessment of bisphenol-A: evidence from comparative biology. Reprod Toxicol 24:225–239CrossRefGoogle Scholar
  29. Crinnion W (2011) Polychlorinated biphenyls: persistent pollutants with immunological, neurological, and endocrinological consequences. Environ Med 16(1):5–13Google Scholar
  30. de Llasera MPG, de Jesús Olmos-Espejel J, Díaz-Flores G, Montaño-Montiel A (2016) Biodegradation of benzo (a) pyrene by two freshwater microalgae Selenastrum capricornutum and Scenedesmus acutus: a comparative study useful for bioremediation. Environ Sci Pollut Res 23:3365–3375CrossRefGoogle Scholar
  31. Dhankher OP, Pilon-Smits EAH, Meagher RB, Doty S (2012) Biotechnological approaches for phytoremediation. In: Atman A, Hasegawa PM (eds) Plant biotechnology and agriculture, prospects for the 21st century. Academic Press, Oxford, U.K, pp 309–328CrossRefGoogle Scholar
  32. Dias E, Oliveira M, Jones-Dias D, Vasconcelos V, Ferreira E, Manageiro V, Caniça M (2015) Assessing the antibiotic susceptibility of freshwater Cyanobacteria spp. Front Microbiol 6:799CrossRefGoogle Scholar
  33. Ding T, Lin K, Yang B, Yang M, Li J, Li W, Gan J (2017) Biodegradation of naproxen by freshwater algae Cymbella sp. and Scenedesmus quadricauda and the comparative toxicity. Bioresour Technol 238:164–173CrossRefGoogle Scholar
  34. Dosnon-Olette R, Trotel-Aziz P, Couderchet M, Eullaffroy P (2010) Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere 79:117–123CrossRefGoogle Scholar
  35. Droop MR (1974) The nutrient status of algal cells in continuous culture. J Mar Biol Assoc UK 54:825–855CrossRefGoogle Scholar
  36. Dyhrman ST, Chappell PD, Haley ST, Moffett JW, Orchard ED, Waterbury JB, Webb EA (2006) Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439(7072):68–71CrossRefGoogle Scholar
  37. Dziallas C, Grossart H-P (2011) Temperature and biotic factors influence bacterial communities associated with the cyanobacterium Microcystis sp. Environ Microbiol 13(6):1632–1641CrossRefGoogle Scholar
  38. El-Sheekh MM, Ghareib MM, EL-Souod GWA (2012) Biodegradation of phenolic and polycyclic aromatic compounds by some algae and cyanobacteria. J Bioremed Biodegr 3:133CrossRefGoogle Scholar
  39. Forlani G, Pavan M, Gramek M, Kafarski P, Lipok J (2008) Biochemical bases for a widespread tolerance of cyanobacteria to the Phosphonate herbicide glyphosate. Plant Cell Physiol 49(3):443–456CrossRefGoogle Scholar
  40. Friesen-Pankratz B, Doebel C, Farenhorst A, Goldsborough LG (2003) Influence of algae (Selenastrum capricornutum) on the aqueous persistence of atrazine and lindane: implications for managing constructed wetlands for pesticide removal. J Environ Sci Heal B B38:147–155CrossRefGoogle Scholar
  41. Gamila HA, Ibrahim MBM (2004) Algal bioassay for evaluating the role of algae in bioremediation of crude oil:1-isolated strains. Bull Environ Contam Toxicol 723:883–889CrossRefGoogle Scholar
  42. Gascon M, Morales E, Sunyer J, Vrijheid M (2013) Effects of persistent organic pollutants on the developing respiratory and immune systems: a systematic review. Environ Int 52:51–65CrossRefGoogle Scholar
  43. Gattullo CE, Bahrs H, Steinberg CEW, Loffredo E (2012) Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Sci Total Environ 416:501–506CrossRefGoogle Scholar
  44. Ge L, Deng H (2015) Degradation of two fluoroquinolone antibiotics photoinduced by Fe(III)-microalgae suspension in an aqueous solution. Photochem Photobiol Sci 14(4):693–699CrossRefGoogle Scholar
  45. González R, García-Balboa C, Rouco M, Lopez-Rodas V, Costas E (2012) Adaptation of microalgae to lindane: a new approach for bioremediation. Aquat Toxic 109:25–32CrossRefGoogle Scholar
  46. Greenberg MM (1997) The central nervous system and exposure to toluene: a risk characterization. Environ Res 72(1):1–7CrossRefGoogle Scholar
  47. Guo XW, Liu KY, He S, Hu HJ, Xu TW (2012) Petroleum generation and charge history of the northern Dongying Depression, Bohai Bay Basin, China: insight from integrated fluid inclusion analysis and basin modeling. Mar Pet Geol 32(1):21–35CrossRefGoogle Scholar
  48. Guo J, Selby K, Boxall ABA (2016) Effects of antibiotics on the growth and physiology of chlorophytes, cyanobacteria, and a diatom. Arch Environ Contam Toxicol 71(4):589–602CrossRefGoogle Scholar
  49. Harding LW, Phillips JH (1978) Polychlorinated Biphenyl (PCB) uptake by marine phytoplankton. Mar Biol 49:103–111CrossRefGoogle Scholar
  50. Headley JV, Du JL, Peru KM, Gurprasa N, McMartin DW (2008) Evaluation of algal phytodegradation of petroleum naphthenic acids. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:227–232CrossRefGoogle Scholar
  51. Hirooka T, Akiyama Y, Tsuji N, Nakamura T, Nagase H, Hirata K, Miyamoto K (2003) Removal of hazardous phenols by microalgae under photoautotrophic conditions. J Biosci Bioeng 95:200–203CrossRefGoogle Scholar
  52. Hoffmann L, Komárek J, Kaštovský J (2005) System of cyanoprokaryotes (cyanobacteria) state in 2004. Algol Stud/Archiv Hydrobiol Supplement Volumes 117:95–115Google Scholar
  53. Hong YW, Yuan DX, Lin QM, Yang TL (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Pollut Bull 56:1400–1405CrossRefGoogle Scholar
  54. Hong SH, Shim WJ, Han GM, Ha SY, Jang M, Rani M, Hong S, Yeo GY (2014) Levels and profiles of persistent organic pollutants in resident and migratory birds from an urbanized coastal region of South Korea. Sci Total Environ 470–471:1463–1470CrossRefGoogle Scholar
  55. Huang H, Marsh-Armstrong N, Brown DD (1999) Metamorphosis is inhibited in transgenic Xenopus laevis tadpoles that overexpress type III deiodinase. Proc Natl Acad Sci U S A 296(3):962–967CrossRefGoogle Scholar
  56. Humbert JF, Quiblier C, Gugger M (2010) Molecular approaches for monitoring potentially toxic marine and freshwater phytoplankton species. Anal Bioanal Chem 397(5):1723–1732CrossRefGoogle Scholar
  57. Hussain J, Zhao Z, Pang Y, Xia L, Hussain I, Jiang X (2016) Effects of different water seasons on the residual characteristics and ecological risk of polycyclic aromatic hydrocarbons in sediments from Changdang Lake, China. J Chem 2016:1–10CrossRefGoogle Scholar
  58. Hussein IAS, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, the effect on human health and remediation. Egyp J Petro 25:107–123CrossRefGoogle Scholar
  59. Hussein MH, Abdullah AM, Badr El-Din NI, Mishaqa ESI (2017) Biosorption potential of the microchlorophyte chlorella vulgaris for some pesticides. J Fertil Pestic 08:01CrossRefGoogle Scholar
  60. Ibrahim MBM, Gamila HA (2004) Algal bioassay for evaluating the role of algae in bioremediation of crude oil: II. freshwater phytoplankton assemblages. Bull Environ Contam Toxicol 73:971–978CrossRefGoogle Scholar
  61. Ishak S, Malakahmad A, Isa MH (2012) Refinery wastewater biological treatment: a short review. J Sci Ind Res 71:251–256Google Scholar
  62. Ji PH, Song YF, Sun TH, Liu Y, Cao XF, Xu D, Yang XX, McRae T (2011) In-situ cadmium phytoremediation using Solanum nigrum L.: the bio-accumulation characteristics trial. Int. J Phytorem 13(10):1014–1023CrossRefGoogle Scholar
  63. Jin ZP, Luo K, Zhang S, Zheng Q, Yang H (2012) Bioaccumulation and catabolism of prometryne in green algae. Chemosphere 87:278–284CrossRefGoogle Scholar
  64. Jobling S, Sumpter JP (1993) Detergent components in sewage effluent are weakly oestrogenic to fish: An in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquatic Toxicology 27:361–372CrossRefGoogle Scholar
  65. Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalga by direct transesterification of algal biomass. Energy Fuel 23:5179–5183CrossRefGoogle Scholar
  66. Jonsson PR, Pavia H, Toth G (2009) Formation of harmful algal blooms cannot be explained by allelopathic interactions. Proc Natl Acad Sci 106(27):11177CrossRefGoogle Scholar
  67. Joseph V, Joseph A (2001) Microalgae in petrochemical effluent: growth and biosorption of total dissolved solids. Bull Environ Contam Toxicol 66:522–527CrossRefGoogle Scholar
  68. Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638CrossRefGoogle Scholar
  69. Jurewicz J, Hanke W (2008) Prenatal and childhood exposure to pesticides and neurobehavioral development: a review of epidemiological studies. Int J Occup Med Environ Health 21(2):121–132CrossRefGoogle Scholar
  70. Kirso U, Irha N (1998) Role of algae in fate of carcinogenic polycyclic aromatic hydrocarbons in the aquatic environment. Ecotox Environ Safety 41(1):83–89CrossRefGoogle Scholar
  71. Klekner V, Kosaric N (1992) Degradation of phenols by algae. Environ Technol 13:493–501CrossRefGoogle Scholar
  72. Kneifel H, Kerstin E, Eberhard H, Carl JS (1997) Biotransformation of 1-naphthalene sulfonic acid by the green alga Scenedesmus obliquus. Arch Microbiol 167:32–37CrossRefGoogle Scholar
  73. Kobayashi H, Rittman BE (1982) Microbial removal of hazardous organic compounds. Environ Sci Technol 16:170–183CrossRefGoogle Scholar
  74. Komárek J (2016) A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. Eur J Phycol 51(3):346–353CrossRefGoogle Scholar
  75. Kraut A, Lilis R, Marcus M, Valciukas JA, Wolff MS, Landrigan PJ (1988) Neurotoxic effects of solvent exposure on sewage treatment workers. Arch Environ Health 43(1):263–268CrossRefGoogle Scholar
  76. Kurade MB, Kim JR, Govindwar SP, Jeon BH (2016) Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: microalgal tolerance to xenobiotic pollutants and metabolism. Algal Res 20:126–134CrossRefGoogle Scholar
  77. Kuritz T, Bocanera LV, Rivera NS (1997) Dechlorination of lindane by the cyanobacterium Anabaena sp. strain PCC7120 depends on the function of the air operon. J Bacteriol 179:3368–3370CrossRefGoogle Scholar
  78. Koksharova OA, Wolk CP (2002) Genetic tools for cyanobacteria Appl Microbiol Biotechnol. 58(2):123–137Google Scholar
  79. Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30(3):673–690CrossRefGoogle Scholar
  80. Lara RJ, Wiencke C, Ernst W (1989) Association between exudates of Brown algae andpolychlorinated biphenyls. J Appl Phycol 1:267–270CrossRefGoogle Scholar
  81. Lauze JF, Hable WE (2017) Impaired growth and reproductive capacity in marine rockweeds following prolonged environmental contaminant exposure. Bot Mar 60:137–148Google Scholar
  82. Lei A, Wong Y, Tam N (2002) Removal of pyrene by different microalgal species. Water Sci Technol 46:195–201CrossRefGoogle Scholar
  83. Leston S, Nunes M, Viegas I, Ramos F, Pardal MA (2013) The effects of chloramphenicol on Ulva lactuca. Chemosphere 91:552–557CrossRefGoogle Scholar
  84. Levy G, Lutz I, Kruger A, Kloas W (2004) Bisphenol a induces feminization in Xenopus laevis tadpoles. Environ Res 94:102–111CrossRefGoogle Scholar
  85. Li H, Pan Y, Wang Z, Chen S, Guo R, Chen J (2015) An algal process treatment combined with the Fenton reaction for high concentrations of amoxicillin and cefradine. RSC Adv 5(122):100775–100782CrossRefGoogle Scholar
  86. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049CrossRefGoogle Scholar
  87. Lika K, Papadakis IA (2009) Modeling the biodegradation of phenolic compounds by microalgae. J Sea Res 62:135–146CrossRefGoogle Scholar
  88. Lima SAC, Castro PML, Morais R (2003) Biodegradation of p-nitrophenol by microalgae. J Appl Phycol 15:137–142CrossRefGoogle Scholar
  89. Lima SAC, Raposo MFJ, Castro PML, Morais RM (2004) Biodegradation of p-chlorophenol by a microalgae consortium. Water Res 38:97–102CrossRefGoogle Scholar
  90. Lin TS, Wu JY (2015) Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresour Technol 184:100–107CrossRefGoogle Scholar
  91. Lindquist B, Warshawsky D (1985) Identi¢cation of the 11,12-dihydro-11,12-dihydroxybenzo(a)pyrene as a major metabolite by the green alga, Selenastrum capricornutum. Biochem Biophys Res Commun 130:71–75CrossRefGoogle Scholar
  92. Lipok J, Studnik H, Gruyaert S (2010) The toxicity of Roundup® 360 SL formulation and its main constituents: glyphosate and isopropylamine towards non-target water photoautotrophs. Ecotoxicol Environ Saf 73(7):1681–1688CrossRefGoogle Scholar
  93. Ljunggren SA, Helmfrid I, Salihovic S, van Bavel B, Wingren G, Lindahl M, Karlsson H (2014) Persistent organic pollutants distribution in lipoprotein fractions in relation to cardiovascular disease and cancer. Environ Int 65:93–99CrossRefGoogle Scholar
  94. Lynn SG, Price DJ, Birge WJ, Kilham SS (2007) Effect of nutrient availability on the uptake of PCB congener 2,20,6,60-tetrachlorobiphenyl by a diatom (Stephanodiscus minutulus) and transfer to a zooplankton (Daphnia pulicaria). Aquat Toxicol 83:24–32CrossRefGoogle Scholar
  95. Mahdavi H, Prasad V, Liu Y, Ulrich AC (2015) In situ biodegradation of naphthenic acids in oil sands, tailings pond water using indigenous algae–bacteria consortium. Bioresour Technol 187:97–105CrossRefGoogle Scholar
  96. Majewski MS, Capel PD (1995) Pesticides in the atmosphere; distribution, trends, and governing factors. Report:94–506. Online: http://pubs.er.usgs.gov/publication/ofr94506
  97. Megharaj M, Venkateswarlu K, Rao AS (1988) Influence of glucose amendment on the algal toxicity of nitrophenols. Ecotoxicol Environ Saf 15:320–323CrossRefGoogle Scholar
  98. Megharaj M, Madhavi DR, Sreenivasulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53:2CrossRefGoogle Scholar
  99. MistraPharma (2011) Collaborating to reduce the environmental risks of pharmaceuticals. MistraPharma researchers and stakeholders. MistraPharma, StockholmGoogle Scholar
  100. Monteiro SC, Boxall ABA (2010) Occurrence and fate of human pharmaceuticals in the environment. Rev Environ Contam Toxicol 202:53–154Google Scholar
  101. Muñoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815CrossRefGoogle Scholar
  102. Muñoz R, Guieysse B, Mattiasson B (2003) Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl Microbiol Biotechnol 61:261–267CrossRefGoogle Scholar
  103. Montero-Rodríguez D, Andrade RFS, Ribeiro DLR, Rubio-Ribeaux D, Lima RA, Araújo HWC, Campos-Takaki GM (2015) Bioremediation of Petroleum Derivative Using Biosurfactant Produced by Serratia marcescens UCP/WFCC 1549 in Low-Cost Medium. Int J Curr Microbiol App Sci 4(7):550–562Google Scholar
  104. Narro ML, Cerniglia CE, Baalen CV, Gibson DT (1992a) Evidence for an NIH shift in oxidation of naphthalene by the marine cyanobacterium Oscillatoria sp. strain JCM. Appl Envron Microbiol 58:1360–1363Google Scholar
  105. Narro ML, Cerniglia CE, Baalen CV, Gibson DT (1992b) Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadrulicatum PR-6. Appl Environ Microbiol 58:1351–1359Google Scholar
  106. Naturvårdsverket (2008) Avloppsreningsverkens förmåga att ta hand om läkemedelsrester och andra farliga ämnen. Report 5794 http://www.naturvardsverket.se/Documents/publikationer/620-5794-7.pdf
  107. Navarro AE, Portales RF, Sun-Kou MR, Llanos BP (2008) Effect of pH on phenol biosorption by marine seaweeds. J Hazard Mater 156:405–411CrossRefGoogle Scholar
  108. Net S, Henry F, Rabodonirina S, Diop M, Merhaby D, Mahfouz C, Amara R, Ouddane B (2015) Accumulation of PAHs, Me-PAHs, PCBs and total mercury in sediments and marine species in coastal areas of Dakar, Senegal: contamination level and impact. Int J Environ Res 9:419–432Google Scholar
  109. Ogbonna JC, Yoshizawa H, Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol 12:277–284CrossRefGoogle Scholar
  110. Olette R, Couderchet M, Biagianti S, Eullaffroy P (2010) Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere 79:117–123CrossRefGoogle Scholar
  111. Palanisami S, Prabaharan D, Uma L (2009) Fate of few pesticide-metabolizing enzymes in the marine cyanobacterium Phormidium valderianum BDU 20041 in perspective with chlorpyrifos exposure. Pestic Biochem Physiol 94(2–3):68–72CrossRefGoogle Scholar
  112. Papazi A, Kotzabasis K (2007) Bioenergetic strategy of microalgae for the biodegradation of phenolic compounds — exogenously supplied energy and carbon sources adjust the level of biodegradation. J Biotechnol 129:706–716CrossRefGoogle Scholar
  113. Pavoni B, Caliceti M, Sperni L, Sfriso A (2003) Organic micropollutants (PAHs, PCBs, pesticides) in seaweeds of the lagoon of Venice. Ocean Acta 26:585–5960CrossRefGoogle Scholar
  114. Pinto G, Pollio A, Previtera L, Temussi F (2002) Biodegradation of phenols by microalgae. Biotechnol Lett 24(24):2047–2051CrossRefGoogle Scholar
  115. Pinto G, Pollio A, Previtera L, Stanzione M, Temussi F (2003) Removal of low molecular weight phenols from olive oil mill wastewater using microalgae. Biotechnol Lett 25:1657–1659CrossRefGoogle Scholar
  116. Priyadarshani I, Sahu D, Rath B (2011) Microalgal bioremediation: current practices and perspectives. J Biochem Technol 3(3):299–304Google Scholar
  117. Pruden A, Larsson DGJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Lazorchak JM, Suzuki S, Silley P, Snape JR, Topp E, Zhang T, Zhu Y-G (2013) Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect 121:8, 878–885CrossRefGoogle Scholar
  118. Qiu YW, Zeng EY, Qiu H, Yu K, Cai S (2017) Bioconcentration of polybrominated diphenyl ethers and organochlorine pesticides in algae is an important contaminant route to higher trophic level. Sci Total Environ 579:1885–1893CrossRefGoogle Scholar
  119. Quintana N, Kooy FV, Miranda DVR, Gerben PV, Robert V (2011) Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91:471–490CrossRefGoogle Scholar
  120. Rajamani S, Siripornadulsil S, Falcão V, Torres M, Colepicolo P, Sayre R (2007) Phycoremediation of heavy metals using transgenic microalgae. Adv Exp Med Biol 616:99–109CrossRefGoogle Scholar
  121. Rani M, Shanker U, Jassal V (2017) Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review. J Environ Manag 190:208–222CrossRefGoogle Scholar
  122. Rastogi R, Sinha R, Incharoensakdi A (2014) The cyanotoxin-microcystins: a current overview. Rev Environ Sci Bio Technol 13:215–249CrossRefGoogle Scholar
  123. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opinion Biotechnol 19:430–436CrossRefGoogle Scholar
  124. Rubin BS (2011) Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 127(1–2):27–34CrossRefGoogle Scholar
  125. Ruzzin J (2012) Public health concern behind the exposure to persistent organic pollutants and the risk of metabolic diseases. BMC Public Health 12:298CrossRefGoogle Scholar
  126. Safonova E, Kvitko K, Kuschk P, Moder M, Reisser W (2005) Biodegradation of phenanthrene by the green alga Scenedesmus obliquus ES-55. Eng Life Sci 5:234–239CrossRefGoogle Scholar
  127. Sanborn M, Kerr KJ, Sanin LH, Cole DC, Bassil KL, Vakil C (2007) Non-cancer health effects of pesticides: systematic review and implications for family doctors. Can Fam Physician 53(10):1712–1720Google Scholar
  128. Scragg AH (2006) The effect of phenol on the growth of Chlorella vulgaris and Chlorella VT-1. Enzym Microb Technol 39:796–799CrossRefGoogle Scholar
  129. Semple KT (1998) Heterotrophic growth on phenolic mixtures by Ochromonas danica. Res Microbiol 149:65–72CrossRefGoogle Scholar
  130. Semple KT, Cain RB (1995) Metabolism of phenols by Ochromonas danica. FEMS Microbiol Lett 133:253–257CrossRefGoogle Scholar
  131. Semple KT, Cain RB (1996) Biodegradation of phenols by the alga Ochromonas danica. Appl Environ Microbiol 62(4):1265–1273Google Scholar
  132. Semple KT, Cain RB (1997) Biodegradation of phenol and its methylated homologues by Ochromonas danica. FEMS Microbiol Lett 152:133–139CrossRefGoogle Scholar
  133. Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170:291–300CrossRefGoogle Scholar
  134. Senthilvelan T, Kanagaraj J, Panda RC, Mandal AB (2014) Biodegradation of phenol by mixed microbial culture: an ecofriendly approach for pollution reduction. Clean Techn Environ Policy 16:113–126CrossRefGoogle Scholar
  135. Sethunathan N, Megharaj M, Chen ZL, Williams BD, Lewis G, Naidu R (2004) Algal degradation of a known endocrine-disrupting insecticide, alpha-endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil. J Agric Food Chem 52:3030–3035CrossRefGoogle Scholar
  136. Sole A, Matamoros V (2016) Removal of endocrine disrupting compounds from wastewater by microalgae co-immobilized in alginate beads. Chemosphere 164:516–523CrossRefGoogle Scholar
  137. Soto C, Hellebust JA, Hutchinson TC (1975) Effect of naphthalene and crude oil extracts on the green flagellate Chlamydomonas angulosa. II. Photosynthesis and the uptake and release of naphthalene. Can J Bot 53:118–126CrossRefGoogle Scholar
  138. Souza EC, Vessoni-Penna TC, Oliveira RPDS (2014) Biosurfactant-enhanced hydrocarbon bioremediation: an overview. Int Biodeterior Biodegradation 89:88–94CrossRefGoogle Scholar
  139. Stange K, Swackhamer DL (1994) Factors affecting phytoplankton species-specific differences in accumulation of 40 polychlorinated biphenyls (PCBs). Environmental Toxicology and Chemistry 13(11):1849–1860CrossRefGoogle Scholar
  140. Stanier RY, Sistrom WR, Hansen TA, Whitton BA, Castenholz RW, Pfennig N, Gorlenko VN, Kondratieva EN, Eimhjellen KE, Whittenbury R (1978) Proposal to place the nomenclature of the cyanobacteria (blue-green algae) under the rules of the international code of nomenclature of bacteria. Int J Syst Evol Microbiol 28(2):335–336CrossRefGoogle Scholar
  141. Staples CA, Dorn PB, Klecka GM, Branson DR, O’Block ST, Harris LR (1998) A review of the environmental fate, effects and exposures of Bisphenol A. Chemosphere 36:2149–2173CrossRefGoogle Scholar
  142. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29:896–907CrossRefGoogle Scholar
  143. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int 51:59–72CrossRefGoogle Scholar
  144. Suresh B, Ravishankar GA (2004) Phytoremediation—a novel and promising approach for environmental cleanup. Crit Rev Biotechnol 24:97–124CrossRefGoogle Scholar
  145. Sijm D, Broersen KW, de Roode DF, Mayer P (1998) Bioconcentration kinetics of hydrophobic chemicals in different densities of Chlorella pyrenoidosa. Environ Toxicol Chem. 17:1695–704CrossRefGoogle Scholar
  146. Tang X, He LY, Tao XQ, Dang Z, Guo CL, Lu GN, Yi XY (2010) Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. J Hazard Mater 181:1158–1162CrossRefGoogle Scholar
  147. Thengodkar RRM, Sivakami S (2010) Degradation of Chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis. Biodegradation 21(4):637–644CrossRefGoogle Scholar
  148. Tikoo V, Scragg AH, Shales SW (1997) Degradation of pentachlorophenol by microalgae. J Chem Technol Biotechnol 68:425–431CrossRefGoogle Scholar
  149. Turner JT (2014) Planktonic marine copepods and harmful algae. Harmful Algae 32:81–93CrossRefGoogle Scholar
  150. Valério E, Chambel L, Paulino S, Faria N, Pereira P, Tenreiro R (2009) Molecular identification, typing and traceability of cyanobacteria from freshwater reservoirs. Microbiology 155(Pt 2):642–656CrossRefGoogle Scholar
  151. Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresource Technology 223:277–286CrossRefGoogle Scholar
  152. Varjani SJ, Upasani VN (2017) A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeter Biodegr 120:71–83CrossRefGoogle Scholar
  153. Vested A, Giwercman A, Bonde JP, Toft G (2014) Persistent organic pollutants and male reproductive health. Asian J Androl 16(1):71–80CrossRefGoogle Scholar
  154. Waigi MG, Kang F, Goikavi C, Ling W, Gao Y (2015) Phenanthrene biodegradation by sphingomonads and its application in the contaminated soils and sediments: a review. Int Biodeterior Biodegradation 104:333–349CrossRefGoogle Scholar
  155. Walker JD, Colwell RR, Petrakis L (1975) Degradation of petroleum by an alga, Prototheca zopfii. Appl Environ Microbiol 30:79–81Google Scholar
  156. Walker TL, Becker DK, Dale JL, Collet C (2005) Towards the development of a nuclear transformation system for Dunaliella tertiolecta. J Appl Phycol 17:363–368CrossRefGoogle Scholar
  157. Wang B, Li Y, Wu N, Lan QC (2008) CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology 79(5):707–718CrossRefGoogle Scholar
  158. Wang J, Yang H, Wang F (2014) Mixotrophic Cultivation of Microalgae for Biodiesel Production: Status and Prospects. Applied Biochemistry and Biotechnology 172(7):3307–3329CrossRefGoogle Scholar
  159. Wang C, Lin X, Li L, Lin L, Lin S (2017a) Glyphosate shapes a dinoflagellate-associated bacterial community while supporting algal growth as sole phosphorus source. Front Microbiol 8:2530CrossRefGoogle Scholar
  160. Wang R, Wang S, Tai Y, Tao R, Dai Y, Guo J, Yang Y, Duan S (2017b) Biogenic manganese oxides generated by green algae Desmodesmus sp. WR1 to improve bisphenol A removal. J Hazard Mater 339:310–319CrossRefGoogle Scholar
  161. Warshawsky D, Keenan TH, Reilman R, Cody TE, Radike MJ (1990) Conjugation of benzo(a)pyrene by freshwater green alga Selenastrum capricornutum. Chem Biol Interact 74:93–105CrossRefGoogle Scholar
  162. Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81:229–249CrossRefGoogle Scholar
  163. Winneke G (2011) Developmental aspects of environmental neurotoxicology: lessons from lead and polychlorinated biphenyls. J Neurol Sci 308(1–2):9–15CrossRefGoogle Scholar
  164. Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbial-diesel production. Appl Microbiol Biotechnol 78:29–36CrossRefGoogle Scholar
  165. Yan X, Yang Y, Li Y, Sheng G, Yan G (2002) Accumulation and biodegradation of anthracene by Chlorella protothecoides under different trophic conditions. Chin J Appl Ecol 13:145–150Google Scholar
  166. Yang S, Wu RSS, Kong YC (2002) Biodegradation and enzymatic responses in the marine diatom Skeletonema costatum upon exposure to 2,4-dichlorophenol. Aquat Toxicol 59:191–200CrossRefGoogle Scholar
  167. Zaini MAA, Amano Y, Machida M (2010) Adsorption of heavy metals onto activated carbons derived from polyacrylonitrile fiber. J Hazar Mater 180:552–560CrossRefGoogle Scholar
  168. Zhang H, Jiang X, Lu L, Xiao W (2015) Biodegradation of polychlorinated biphenyls (PCBs) by the novel identified cyanobacterium Anabaena PD-1, H.-J. Lehmler. PLoS One 10(7):e0131450CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ashutosh Pandey
    • 1
  • Manish Pratap Singh
    • 1
  • Sanjay Kumar
    • 2
  • Sameer Srivastava
    • 1
    Email author
  1. 1.Department of BiotechnologyMotilal Nehru National Institute of Technology AllahabadPrayagrajIndia
  2. 2.School of Biochemical Engineering, Indian Institute of Technology (BHU) VaranasiVaranasiIndia

Personalised recommendations