Microalgal Biotechnology Application Towards Environmental Sustainability

  • Hesam Kamyab
  • Shreeshivadasan ChelliapanEmail author
  • Ashok Kumar
  • Shahabaldin Rezania
  • Amirreza Talaiekhozani
  • Tayebeh Khademi
  • Parveen Fatemeh Rupani
  • Swati Sharma


Many researches have been conducted to investigate the alternative source of energy from renewable sources and utilization of waste materials. Among which, microalgae, having wide range of environmental adaptability, represents a diverse group of microorganisms; hence, its application in biotechnology is among the scholars’ interest. Microalgae have the ability to store lipids and preserve the nutrients presented in the wastewater, which help in wastewater treatments. Besides, the algal biofuel production gained research interest in recent years. Among few important factors for the microalgal growth, proper presence of light and sufficient nutrients such as nitrogen and phosphorus are essential. Developing algae production would help to mitigate greenhouse gas emissions by capturing CO2, and producing an alternative option for fossil fuels which could be valuable and sustainable. Hence, with growing interest and several analyses, this review discusses the key points in developing microalgal biotechnology toward sustainable development.


Microalgae Wastewater Environmental pollution Biofuel Bio methane 



The authors wish to thank Ministry of Education Malaysia and Universiti Teknologi Malaysia for funding this study under the Fundamental Research Grant Scheme (FRGS) Vote Number R.K130000.7856.5F049. The first author is a researcher of Universiti Teknologi Malaysia (UTM) under the Post-Doctoral Fellowship Scheme (PDRU Grant) for the project: “Enhancing the Lipid Growth in Algae Cultivation for Biodiesel Production” (Vot No. Q. JJJ130000.21A2.03E95).


  1. Ågren GI (2004) The C: N: P stoichiometry of autotrophs–theory and observations. Ecol Lett 7(3):185–191CrossRefGoogle Scholar
  2. Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28(1):64–70CrossRefGoogle Scholar
  3. Atta M, Idris A, Bukhari A, Wahidin S (2013) Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresour Technol 148:373–378CrossRefGoogle Scholar
  4. Barros AI, Gonçalves AL, Simões M, Pires JC (2015) Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev 41:1489–1500CrossRefGoogle Scholar
  5. Bosma R, van Spronsen WA, Tramper J, Wijffels RH (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15(2–3):143–153CrossRefGoogle Scholar
  6. Chacón-Lee TL, González-Mariño GE (2010) Microalgae for “healthy” foods—possibilities and challenges. Compr Rev Food Sci Food Saf 9(6):655–675CrossRefGoogle Scholar
  7. Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol Lett 18(5):603–608CrossRefGoogle Scholar
  8. Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101(9):3097–3105CrossRefGoogle Scholar
  9. Chisti Y (2007) Biodiesel from microalgae. Biotechnology Advances 25:294–306. Google ScholarCrossRefGoogle Scholar
  10. Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process Process Intensif 48(6):1146–1151CrossRefGoogle Scholar
  11. Eloka-Eboka AC, Inambao FL (2017) Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production. Appl Energy 195:1100–1111CrossRefGoogle Scholar
  12. Fahy E, Cotter D, Sud M, Subramaniam S (2011) Lipid classification, structures and tools. Biochim Biophys Acta 1811(11):637–647CrossRefGoogle Scholar
  13. Feng D, Chen Z, Xue S, Zhang W (2011) Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour Technol 102(12):6710–6716CrossRefGoogle Scholar
  14. Fogg GE (1959) Nitrogen nutrition and metabolic patterns in algae. Symp Soc Exp Biol 13:106–125Google Scholar
  15. Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5(1):47Google Scholar
  16. Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269–274CrossRefGoogle Scholar
  17. Grima EM, Belarbi EH, Fernández FA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515CrossRefGoogle Scholar
  18. Heasman M, Diemar J, O’connor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs–a summary. Aquac Res 31(8–9):637–659CrossRefGoogle Scholar
  19. Hemschemeier A, Melis A, Happe T (2009) Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosynth Res 102(2–3):523–540CrossRefGoogle Scholar
  20. Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87(1):38–46CrossRefGoogle Scholar
  21. Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym Microb Technol 27(8):631–635CrossRefGoogle Scholar
  22. Kamyab H, Tin Lee C, Md Din MF, Ponraj M, Mohamad SE, Sohrabi M (2014) Effects of nitrogen source on enhancing growth conditions of green algae to produce higher lipid. Desalin Water Treat 52(19–21):3579–3584CrossRefGoogle Scholar
  23. Kamyab H, Din MFM, Keyvanfar A, Majid MA, Talaiekhozani A, Shafaghat A, Ismail HH (2015) Efficiency of microalgae Chlamydomonas on the removal of pollutants from palm oil mill effluent (POME). Energy Procedia 75:2400–2408CrossRefGoogle Scholar
  24. Kamyab H, Din MFM, Hosseini SE, Ghoshal SK, Ashokkumar V, Keyvanfar A, Majid MZA (2016a) Optimum lipid production using agro-industrial wastewater treated microalgae as biofuel substrate. Clean Techn Environ Policy 18(8):2513–2523CrossRefGoogle Scholar
  25. Kamyab H, Din MFM, Ghoshal SK, Lee CT, Keyvanfar A, Bavafa AA, Lim JS (2016b) Chlorella pyrenoidosa mediated lipid production using Malaysian agricultural wastewater: effects of photon and carbon. Waste Biomass Valoriz 7(4):779–788CrossRefGoogle Scholar
  26. Kamyab H, Md Din MF, Ponraj M, Keyvanfar A, Rezania S, Taib SM, Abd Majid MZ (2016c) Isolation and screening of microalgae from agro-industrial wastewater (POME) for biomass and biodiesel sources. Desalin Water Treat 57(60):29118–29125CrossRefGoogle Scholar
  27. Kamyab H, Chelliapan S, Din MFM, Shahbazian-Yassar R, Rezania S, Khademi T, Azimi M (2017) Evaluation of Lemna minor and Chlamydomonas to treat palm oil mill effluent and fertilizer production. J Water Process Eng 17:229–236CrossRefGoogle Scholar
  28. Kayombo S, Mbwette TSA, Katima JH, Jorgensen SE (2003) Effects of substrate concentrations on the growth of heterotrophic bacteria and algae in secondary facultative ponds. Water Res 37(12):2937–2943CrossRefGoogle Scholar
  29. Kessler JO (1985) Hydrodynamic focusing of motile algal cells. Nature 313(5999):218CrossRefGoogle Scholar
  30. Khan SA, Hussain MZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sust Energ Rev 13(9):2361–2372CrossRefGoogle Scholar
  31. Lam MK, Lee KT (2011) Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win–win strategies toward better environmental protection. Biotechnol Adv 29(1):124–141CrossRefGoogle Scholar
  32. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31(7):1043–1049CrossRefGoogle Scholar
  33. Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15(4):377–390CrossRefGoogle Scholar
  34. Markou G, Vandamme D, Muylaert K (2014) Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res 65:186–202CrossRefGoogle Scholar
  35. Martinez ME, Jimenez JM, El Yousfi F (1999) Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus. Bioresour Technol 67(3):233–240CrossRefGoogle Scholar
  36. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232CrossRefGoogle Scholar
  37. McHugh DJ (2003) A guide to the seaweed industry FAO Fisheries Technical Paper 441. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  38. Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PK, Vellayan V (2016) Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sust Energ Rev 58:180–197CrossRefGoogle Scholar
  39. Mohn FH (1980) Experiences and strategies in the recovery of biomass from mass cultures of microalgae. Algae biomass: production and use/[sponsored by the National Council for Research and Development, Israel and the Gesellschaft fur Strahlen-und Umweltforschung (GSF), Munich, Germany]; editors, Gedaliah Shelef, Carl J. SoederGoogle Scholar
  40. Mondal M, Goswami S, Ghosh A, Oinam G, Tiwari ON, Das P, Gayen K, Mandal MK, Halder GN (2017) Production of biodiesel from microalgae through biological carbon capture: a review. 3. Biotech 7(2):1–21Google Scholar
  41. Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3(1):371–394CrossRefGoogle Scholar
  42. Morita M, Watanabe Y, Okawa T, Saiki H (2001) Photosynthetic productivity of conical helical tubular photobioreactors incorporating Chlorella sp. under various culture medium flow conditions. Biotechnol Bioeng 74(2):136–144CrossRefGoogle Scholar
  43. Munoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(15):2799–2815CrossRefGoogle Scholar
  44. Nesamma AA, Shaikh KM, Jutur PP (2015) Genetic engineering of microalgae for production of value-added ingredients. In: Handbook of Marine Microalgae. Elsevier, UK, England, pp 405–414CrossRefGoogle Scholar
  45. Nurdogan Y, Oswald WJ (1996) Tube settling of high-rate pond algae. Water Sci Technol 33(7):229–241CrossRefGoogle Scholar
  46. Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20(4–6):459–466CrossRefGoogle Scholar
  47. Pavlik D, Zhong Y, Daiek C, Liao W, Morgan R, Clary W, Liu Y (2017) Microalgae cultivation for carbon dioxide sequestration and protein production using a high-efficiency photobioreactor system. Algal Res 25:413–420CrossRefGoogle Scholar
  48. Perez-Garcia O, Escalante FM, de Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36CrossRefGoogle Scholar
  49. Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25CrossRefGoogle Scholar
  50. Plaza M, Herrero M, Cifuentes A, Ibáñez E (2009) Innovative natural functional ingredients from microalgae. J Agric Food Chem 57(16):7159–7170CrossRefGoogle Scholar
  51. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648CrossRefGoogle Scholar
  52. Raven JA, Evans MC, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60(2–3):111–150CrossRefGoogle Scholar
  53. Ren HY, Liu BF, Kong F, Zhao L, Xie GJ, Ren NQ (2014) Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition. Bioresour Technol 169:763–767CrossRefGoogle Scholar
  54. Resdi R, Lim JS, Kamyab H, Lee CT, Hashim H, Mohamad N, Ho WS (2016) Review of microalgae growth in palm oil mill effluent for lipid production. Clean Techn Environ Policy 18(8):2347–2361CrossRefGoogle Scholar
  55. Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI (1996) Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 97(12):2859–2865CrossRefGoogle Scholar
  56. Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101(1):58–64CrossRefGoogle Scholar
  57. Ryu BG, Kim EJ, Kim HS, Kim J, Choi YE, Yang JW (2014) Simultaneous treatment of municipal wastewater and biodiesel production by cultivation of Chlorella vulgaris with indigenous wastewater bacteria. Biotechnol Bioprocess Eng 19(2):201–210CrossRefGoogle Scholar
  58. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43CrossRefGoogle Scholar
  59. Shirvani T (2012) The environmental feasibility of algae biodiesel production. Appl Petrochem Res 2:93–95CrossRefGoogle Scholar
  60. Shuler ML, Kargi F (2002) How cells grow. In: Bioprocess Engineering Basic Concepts. Prentice Hall, Upper Saddle River, NJ, pp 162–164Google Scholar
  61. Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: a review. Renew Sust Energ Rev 50:431–444CrossRefGoogle Scholar
  62. Suzuki T, Suzuki M, Furusaki A, Matsumoto T, Kato A, Imanaka Y, Kurosawa E (1985) Teurilene and thyrsiferyl 23-acetate, meso and remarkably cytotoxic compounds from the marine red alga Laurencia obtusa (Hudson) Lamouroux. Tetrahedron Lett 26(10):1329–1332CrossRefGoogle Scholar
  63. Venkatesan J, Manivasagan P, Kim SK (2015) Marine microalgae biotechnology: present trends and future advances. In: Handbook of Marine Microalgae. Elsevier, UK, England, pp 1–9Google Scholar
  64. Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101(8):2623–2628CrossRefGoogle Scholar
  65. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126(4):499–507CrossRefGoogle Scholar
  66. Yeh KL, Chang JS (2012) Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour Technol 105:120–127CrossRefGoogle Scholar
  67. Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101(1):S71–S74CrossRefGoogle Scholar
  68. Zhang H, Sun S, Mai K, Liang Y (2000) Advances in the studies on heterotrophic culture of microalgae [J]. Trans Oceanol Limnol 3:010Google Scholar
  69. Zhao BT, Su YX (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sustain Energy Rev 31:121–132CrossRefGoogle Scholar
  70. Zheng Y, Li T, Yu X, Bates PD, Dong T, Chen S (2013) High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Appl Energy 108:281–287CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hesam Kamyab
    • 1
    • 2
  • Shreeshivadasan Chelliapan
    • 1
    Email author
  • Ashok Kumar
    • 3
  • Shahabaldin Rezania
    • 4
  • Amirreza Talaiekhozani
    • 5
  • Tayebeh Khademi
    • 6
  • Parveen Fatemeh Rupani
    • 7
  • Swati Sharma
    • 8
  1. 1.Department of EngineeringUTM Razak School of Engineering and Advanced Technology, Universiti Teknologi MalaysiaKuala LumpurMalaysia
  2. 2.Department of Mechanical and Industrial EngineeringUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Department of Biotechnology and BioinformaticsJaypee University of Information TechnologyWaknaghatIndia
  4. 4.Department of Environment and EnergySejong UniversitySeoulRepublic of Korea
  5. 5.Department of Civil EngineeringJami Institute of TechnologyIsfahanIran
  6. 6.Faculty of ManagementUniversiti Teknologi MalaysiaIskandar PuteriMalaysia
  7. 7.Biofuel Institute, School of Environment and EnergyJiangsu UniversityZhenjiangChina
  8. 8.Faculty of Chemical and Natural Resources EngineeringUniversiti Malaysia PahangGambangMalaysia

Personalised recommendations