Advertisement

Use of GNSS Tropospheric Products for Climate Monitoring (Working Group 3)

  • O. BockEmail author
  • R. Pacione
  • F. Ahmed
  • A. Araszkiewicz
  • Z. Bałdysz
  • K. Balidakis
  • C. Barroso
  • S. Bastin
  • S. Beirle
  • J. Berckmans
  • J. Böhm
  • J. Bogusz
  • M. Bos
  • E. Brockmann
  • M. Cadeddu
  • B. Chimani
  • J. Douša
  • G. Elgered
  • M. Eliaš
  • R. Fernandes
  • M. Figurski
  • E. Fionda
  • M. Gruszczynska
  • G. Guerova
  • J. Guijarro
  • C. Hackman
  • R. Heinkelmann
  • J. Jones
  • S. Zengin Kazancı
  • A. Klos
  • D. Landskron
  • J. P. Martins
  • V. Mattioli
  • B. Mircheva
  • S. Nahmani
  • R. T. Nilsson
  • T. Ning
  • G. Nykiel
  • A. Parracho
  • E. Pottiaux
  • A. Ramos
  • P. Rebischung
  • A. Sá
  • W. Dorigo
  • H. Schuh
  • G. Stankunavicius
  • K. Stępniak
  • H. Valentim
  • R. Van Malderen
  • P. Viterbo
  • P. Willis
  • A. Xaver
Conference paper

Abstract

There has been growing interest in recent years in the use of homogeneously reprocessed ground-based GNSS, VLBI, and DORIS measurements for climate applications. Existing datasets are reviewed and the sensitivity of tropospheric estimates to the processing details is discussed. The uncertainty in the derived IWV estimates and linear trends is around 1 kg m−2 RMS and ± 0.3 kg m−2 per decade, respectively. Standardized methods for ZTD outlier detection and IWV conversion are proposed. The homogeneity of final time series is limited however by changes in the stations equipment and environment. Various homogenization algorithms have been evaluated based on a synthetic benchmark dataset. The uncertainty of trends estimated from the homogenized times series is estimated to ±0.5 kg m−2 per decade. Reprocessed GNSS IWV data are analysed along with satellites data, reanalyses and global and regional climate model simulations. A selection of global and regional reprocessed GNSS datasets and ERA-interim reanalysis are made available through the GOP-TropDB tropospheric database and online service. A new tropo SINEX format, providing new features and simplifications, was developed and it is going to be adopted by all the IAG services.

References

  1. Adams, D. K., Fernandes, R. M. S., & Maia, J. M. F. (2011). GNSS precipitable water vapour from an Amazonian rain forest flux tower. Journal of Atmospheric and Oceanic Technology, 28(10), 1192–1198.  https://doi.org/10.1175/JTECH-D-11-00082.1.CrossRefGoogle Scholar
  2. Ahmed F., Teferle N., Bingley R., & Hunegnaw A. (2014). A comparative analysis of tropospheric delay estimates from network and precise point positioning processing strategies. Presented at IGS Workshop 2014, 23–27.06.2014, Pasadena, California, USA.Google Scholar
  3. Alexandersson, H. (1986). A homogeneity test applied to precipitation data. Journal of Climatology, 6, 661–675.CrossRefGoogle Scholar
  4. Altamimi, Z., Rebisching, P., Metivier, L., & Collilieux, X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modelling nonlinear station motions. Journal of Geophysical Research – Solid Earth, 121(8), 6109–6131.  https://doi.org/10.1002/2016JB013098.CrossRefGoogle Scholar
  5. Antón, M., Loyola, D., Román, R., & Vömel, H. (2015). Validation of GOME-2/MetOp-A total water vapour column using reference radiosonde data from the GRUAN network. Atmospheric Measurement Techniques, 8, 1135–1145.  https://doi.org/10.5194/amt-8-1135-2015 CrossRefGoogle Scholar
  6. Araszkiewicz, A., & Voelksen, C. (2017). The impact of the antenna phase centre models on the coordinates in the EUREF Permanent Network. GPS Solutions, 21, 747–757.  https://doi.org/10.1007/s10291-016-0564-7.CrossRefGoogle Scholar
  7. Askne, J., & Nordius, H. (1987). Estimation of tropospheric delay for microwaves from surface weather data. Radio Science, 22(3), 379–386.  https://doi.org/10.1029/RS022i003p00379.CrossRefGoogle Scholar
  8. Bałdysz Z, Nykiel G, Araszkiewicz A, Figurski M, Szafranek K (2016) Comparison of GPS tropospheric delays derived from two consecutive EPN reprocessing campaigns from the point of view of climate monitoring. Atmospheric Measurement Techniques, 9(9), 4861–4877. https://doi.org/ https://doi.org/10.5194/amt-9-4861-2016 (licensed under CC BY 3.0, https://creativecommons.org/licenses/by/3.0/).CrossRefGoogle Scholar
  9. Balidakis, K., Nilsson, T., Zus, F., Glaser, S., Heinkelmann, R., Deng, Z., & Schuh, H. (2018). Estimating integrated water vapour trends from VLBI, GPS and numerical weather models: sensitivity to tropospheric parameterization. Journal of Geophysical Research: Atmospheres, 123, 6356–6372.  https://doi.org/10.1029/2017JD028049.CrossRefGoogle Scholar
  10. Barnston, A. G., & Livezey, R. E. (1987). Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly Weather Review, 115(6), 1083–1126. https://doi.org/ https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2
  11. Bar-Sever, Y. E., Kroger, P. M., & Borjesson, J.A. (1998). Estimating Horizontal Gradients of Tropospheric Path Delay with a Single GPS Receiver. Journal of Geophysical Research, 103, 5019–5035.Google Scholar
  12. Basili, P., Bonafoni, S., Ferrara, R., Ciotti, P., Fionda, E., & Arnbrosini, R. (2001). Atmospheric water vapour retrieval by means of both a GPS network and a microwave radiometer during an experimental campaign in Cagliari, Italy. In 1999, Geoscience and Remote Sensing, IEEE Transactions on, Vol. 39, No.11, pp. 2436–2443.  https://doi.org/10.1109/36.964980 CrossRefGoogle Scholar
  13. Beirle, S., Lampel, J., Wang, Y., Mies, K., Dörner, S., Grossi, M., Loyola, D., Dehn, A., Danielczok, A., Schröder, M., & Wagner, T. (2018). The ESA GOME-Evolution “Climate” water vapor product: a homogenized time series of H2O columns from GOME, SCIAMACHY, and GOME-2. Earth System Science Data, 10, 449–468.  https://doi.org/10.5194/essd-10-449-2018.CrossRefGoogle Scholar
  14. Bennouna, Y. S., Torres, B., Cachorro, V. E., Ortiz de Galisteo, J. P., & Toledano, C. (2013). The evaluation of the integrated water vapour annual cycle over the Iberian Peninsula from EOS-MODIS against different ground-based techniques. Quarterly Journal of the Royal Meteorological Society, 139, 1935–1956.  https://doi.org/10.1002/qj.2080.CrossRefGoogle Scholar
  15. Berckmans, J., Giot, O., De Troch, R., Hamdi, R., Ceulemans, R., & Termonia, P. (2017). Reinitialised versus continuous regional climate simulations using ALARO-0 coupled to the land surface model SURFEXv5. Geoscientific Model Development, 10, 223–238.CrossRefGoogle Scholar
  16. Berg, H. (1948). Allgemeine meteorologie. Bonn: Dümmler’s Verlag.Google Scholar
  17. Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: remote sensing of atmospheric water vapour using the global positioning system. Journal of Geophysical Research, 97(D14), 15787–15801.CrossRefGoogle Scholar
  18. Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken, C., & Ware, R. H.(1994). GPS meteorology: Mapping Zenith wet delays onto precipitable water. Journal of Applied Meterology, 33(3), 379–386. https://doi.org/ https://doi.org/10.1175/1520−0450(1994)033<0379:GMMZWD>2.0.CO;2
  19. Bock, O. (2015, May) ZTD assessment and screening. COST ES1206 GNSS4SWEC Workshop, Thessaloniki, Greece, 11–13 May 2015.Google Scholar
  20. Bock, O. (2016a). A reference IWV dataset combining IGS repro1 and ERA-Interim reanalysis for the assessment of homogenization algorithms. 3rd COST ES1206 Workshop, 8–11 March 2016, Reykjavik, Island.Google Scholar
  21. Bock, O. (2016b). Post-processing of GNSS ZTD, COST ES1206 GNSS4SWEC Summer School, 29–31 August 2016, GFZ, Potsdam, Germany. Available at: ftp://ftp.gfz-potsdam.de/pub/GNSS/workshops/gnss4swec/Summer_School/D2/3_Bock_PostProc.pdf
  22. Bock, O. (2016c). Conversion of GNSS ZTD to IWV, COST ES1206 GNSS4SWEC Summer School, 29–31 August 2016, GFZ, Potsdam, Germany. Available at: ftp.gfz-potsdam.de/pub/GNSS/workshops/gnss4swec/Summer_School/D3/2_Bock_Homogenization.pdf
  23. Bock, O. (2016d). Screening and validation of new reprocessed GNSS IWV data in Arctic region, COST ES1206 GNSS4SWEC Workshop, Potsdam, Germany, 31 August–2 September 2016.Google Scholar
  24. Bock O., & Pacione, R. (2014). ZTD to IWV conversion, COST action ES1206 – GNSS4SWEC. 2nd WG meeting, Varna, Bulgaria, 11–12 September, 2014.Google Scholar
  25. Bock, O., Bouin, M.-N., Walpersdorf, A., Lafore, J. P., Janicot, S., Guichard, F., & Agusti-Panareda, A. (2007). Comparison of ground-based GPS precipitable water vapour to independent observations and NWP model reanalyses over Africa. Quarterly Journal of the Royal Meteorological Society, 133, 2011–2027.  https://doi.org/10.1002/qj.185.CrossRefGoogle Scholar
  26. Bock, O., P. Willis, M. Lacarra, & P. Bosser (2010) An inter-comparison of zenith tropospheric delays derived from DORIS and GPS data, Advances in Space Research, 46(12), 1648–1660.  https://doi.org/10.1016/j.asr.2010.05.018 CrossRefGoogle Scholar
  27. Bock, O., Willis, P., Wang, J., & Mears, C. (2014). A high-quality, homogenized, global, long-term (1993-2008) DORIS precipitable water dataset for climate monitoring and model verification. Journal of Gephysics Research Atmosphere, 119(12), 7209–7230.  https://doi.org/10.1002/2013JD021124.CrossRefGoogle Scholar
  28. Bock O., & Parracho, A. C. (2019) Consistency and representativeness of integrated water vapour from ground-based GPS observations and ERA-Interim reanalysis, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-28Google Scholar
  29. Bodeker, G. E., Bojinski, S., Cimini, D., Dirksen, R. J., Haeffelin, M., Hannigan, J. W., Hurst, D. F., Leblanc, T., Madonna, F., Maturilli, M., Mikalsen, A. C., Philipona, R., Reale, T., Seidel, D. J., Tan, D. G. H., Thorne, P. W., Vömel, H., and Wang, J. (2016) Reference upper-air observations for climate: From concept to reality, Amer Meteorological Society, 123–135.  https://doi.org/10.1175/BAMSD-14-00072.1
  30. Boehm, J., & Schuh, H. (2007). Troposphere gradients from the ECMWF in VLBI analysis. Journal of Geodesy, 81, 403–408.  https://doi.org/10.1007/s00190-0144-2.CrossRefGoogle Scholar
  31. Boehm, J., Niell, A., Tregoning, P., & Schuh, H. (2006a). Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophysical Research Letters, 33, L07304.  https://doi.org/10.1029/2005GL025546.CrossRefGoogle Scholar
  32. Boehm, J., Werl, B., & Schuh, H. (2006b). Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. Journal of Geophysical Research, 111, B02406.  https://doi.org/10.1029/2005JB003629.CrossRefGoogle Scholar
  33. Boehm, J., Heinkelmann, R., & Schuh, H. (2007). Short Note: A global model of pressure and temperature for geodetic applications. Journal of Geodesy, 81(10), 679–683.  https://doi.org/10.1007/s00190-007-0135-3.CrossRefGoogle Scholar
  34. Böhm, J., Möller, G., Schindelegger, M., Pain, G., & Weber, R. (2015). Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solutions, 3, 433–441.CrossRefGoogle Scholar
  35. Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., & Bastos, L. (2013). Fast Error Analysis of Continuous GNSS Observations with Missing Data. Journal of Geodesy, 87(4), 351–360.  https://doi.org/10.1007/s00190-012-0605-0.CrossRefGoogle Scholar
  36. Bosser, P., & Bock, O. (2016). Screening of GPS ZTD estimates. 3rd COST ES1206 Workshop, 8–11.03.2016, Reykjavik, Island.Google Scholar
  37. Brown, R. A. (1970). A secondary flow model for the planetary boundary layer. Journal of the Atmospheric Sciences, 27, 742–757.CrossRefGoogle Scholar
  38. Bruyninx, C. H., Habrich, W., Söhne, A., Kenyeres, G., & Stangl, V. C. (2012). Enhancement of the EUREF Permanent Network Services and Products. Geodesy for Planet Earth, IAG Symposia Series, Vol. 136, pp. 27–35.  https://doi.org/10.1007/978-3-642-20338-1_4.Google Scholar
  39. Buehler, S. A., Östman, S., Melsheimer, C., Holl, G., Eliasson, S., John, V. O., Blumenstock, T., Hase, F., Elgered, G., Raffalski, U., Nasuno, T., Satoh, M., Milz, M., & Mendrok, J. (2012). A multi-instrument comparison of integrated water vapour measurements at a high latitude site. Atmospheric Chemistry and Physics, 12, 10925–10943.  https://doi.org/10.5194/acp-12-10925-2012.CrossRefGoogle Scholar
  40. Byram S., Hackman C., & Tracey J. (2011). Computation of a high-precision GPS-based troposphere product by the USNO. In Proceedings of ION GNSS.Google Scholar
  41. Byun, S. H., & Bar-Sever, Y. E. (2009). A new type of troposphere zenith path delay product of the International GNSS Service. Journal of Geodesy, 83(3–4), 1–7.CrossRefGoogle Scholar
  42. Calori, A., Santos, J. R., Blanco, M., Pessano, H., Llamedo, P., Alexander, P., & de la Torre, A. (2016). Ground-based GNSS network and integrated water vapour mapping during the development of severe storms at the Cuyo region (Argentina). Atmospheric Research, 176–177, 267–275.  https://doi.org/10.1016/j.atmosres.2016.03.002.CrossRefGoogle Scholar
  43. Campanelli, M., Mascitelli, A., Sanò, P., Diémoz, H., Estellés, V., Federico, S., Iannarelli, A. M., Fratarcangeli, F., Mazzoni, A., Realini, E., Crespi, M., Bock, O., Martìnez-Lozano, J. A., & Dietrich, S. (2017). Precipitable water vapour content from ESR/SKYNET Sun-sky radiometers: Validation against GNSS/GPS and AERONET over three different sites in Europe. Atmospheric Measurement Techniques Discussions, 1–27.  https://doi.org/10.5194/amt-2017-221,. in review.
  44. Caussinus, H., & Mestre, O. (2004). Detection and correction of artificial shifts in climate series. Journal of the Royal Statistical Society, Series C, 53, 405–425.CrossRefGoogle Scholar
  45. Chen, G., & Herring, T. A. (1997). Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. Journal of Geophysical Research, 102, 20489–20502.  https://doi.org/10.1029/97JB01739.CrossRefGoogle Scholar
  46. Dach, R., Böhm, J., Lutz, S., Steigenberger, P., & Beutler, G. (2010). Evaluation of the impact of atmospheric pressure loading modelling on GNSS data analysis. Journal of Geodesy, 85, 75–91.  https://doi.org/10.1007/s00190-010-0417-z.CrossRefGoogle Scholar
  47. Dach, R., Lutz, S., Walser, P., & Fridez, P. (2015). User manual of the Bernese GNSS Software, Version 5.2. University of Bern, Bern Open Publishing.  https://doi.org/10.7892/boris.72297.
  48. Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E., & Elgered, G. (1985). Geodesy by radio interferometry: Effects of atmospheric modelling errors on estimates of baseline length. Radio Science, 20, 1593–1607.CrossRefGoogle Scholar
  49. Deblonde, G., Macpherson, S., Mireault, Y., & Heroux, P. (2005). Evaluation of GPS precipitable water over Canada and the IGS network. Journal of Applied Meteorology, 44, 153–166.  https://doi.org/10.1175/JAM-2201.1 CrossRefGoogle Scholar
  50. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., & Bechtold, P. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597.  https://doi.org/10.1002/qj.828.CrossRefGoogle Scholar
  51. Douša, J., & Győri, G. (2013). Database for tropospheric product evaluations – implementation aspects. Geoinformatics, 10, 39–52.Google Scholar
  52. Douša, J., Byram, S., Győri, G., Böhm, O., Hackman, C., & Zus, F.. (2014). Development towards inter-technique troposphere parameter comparisons and their exploitation. 2014 IGS Workshop, Pasadena, CA.Google Scholar
  53. Douša, J., Böhm, O., Byram, S., Hackman, C., Deng, Z., Zus, F., Dach, R., & Steigenberger, P. (2016). Evaluation of GNSS reprocessing tropospheric products using GOP-TropDB. Presentation at IGS Workshop 2016, Sydney, March 8–10.Google Scholar
  54. Douša, J., Heikelmann, R., & Balidakis, K. (2017a). Tropospheric ties for inter-technique comparisons and combinations, Presentation at IAG – IASPE, July 30 – August 4, 2017. Japan: Kobe.Google Scholar
  55. Douša, J., Václavovic, P., & Elias, M. (2017b). Tropospheric products of the second GOP European GNSS reprocessing (1996–2014). Atmospheric Measurement Techniques, 10, 3589–3607.  https://doi.org/10.5194/amt-10-3589-2017 (licensed under CC BY 3.0, https://creativecommons.org/licenses/by/3.0/). CrossRefGoogle Scholar
  56. Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F., van Hove, T., Ware, R., McClusky, S., Herring, T. A., & King, R. W. (1996). GPS meteorology: Direct estimation of the absolute value of precipitable water. Journal of Applied Meteorology, 35(6), 830–838. https://doi.org/ https://doi.org/10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2.
  57. Eliaš, M., Douša, J., & Jarušková, D. (2019). An assessment of method for change-point detection applied in tropospheric parameter time series given from numerical weather model (submitted to Acta Geodyn Geomater).Google Scholar
  58. Forkman, P., Elgered, G., & Ning, T. (2017). Accuracy assessment of the two WVRs, Astrid and Konrad, at the Onsala Space Observatory. In Proceedings of the 23rd European VLBI Group for Geodesy and Astrometry Working Meeting, Chalmers University of Technology, Gothenburg, Sweden (pp. 65–69).Google Scholar
  59. Foster, J., Bevis, M., & Raymond, W. (2006). Precipitable water and the lognormal distribution. Journal of Geophysical Research, 111, D15102.  https://doi.org/10.1029/2005JD006731.CrossRefGoogle Scholar
  60. Gazeaux, J., et al. (2013). Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment. Journal of Geophysical Research – Solid Earth, 118, 2397–2407.  https://doi.org/10.1002/jgrb.50152.Google Scholar
  61. GCOS-112. (2007, April). GCOS Reference Upper-Air Network (GRUAN): Justification, requirements, siting and instrumentation options. April 2007. WMO Tech. Doc. No. 1379, WMO.Google Scholar
  62. GCOS-171. (2013, March). The GCOS Reference Upper-Air Network (GRUAN) GUIDE. GCOS-171, Version 1.1.0.3, March 2013, WIGOS Technical Report No. 2013–03.Google Scholar
  63. Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., & Wargan, K. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454.  https://doi.org/10.1175/JCLI-D-16-0758.1.CrossRefGoogle Scholar
  64. Gendt, G. (1997). SINEX TRO – solution (Software/technique) independent exchange format for combination of TROpospheric estimates Version 0.01, 1 March 1997. Available at: https://igscb.jpl.nasa.gov/igscb/data/format/sinex_tropo.txt. (Last access 29 April 2017).
  65. Gobinddass, M. L., Willis, P., Sibthorpe, A., Zelensky, N. P., Lemoine, F. G., Ries, J. C., Ferland, R., Bar-Sever, Y. E., de Viron, O., & Diament, M. (2009). Improving DORIS geocenter time series using an empirical rescaling of solar radiation pressure models. Advances in Space Research, 44(11), 1279–1287.  https://doi.org/10.1016/j.asr.2009.08.004.CrossRefGoogle Scholar
  66. Gobinddass, M. L., Willis, P., Menvielle, M., & Diament, M. (2010). Refining DORIS atmospheric drag estimation in preparation of ITRF2008. Advances in Space Research, 46(12), 1566–1577.  https://doi.org/10.1016/j.asr.2010.04.004.CrossRefGoogle Scholar
  67. Gruber C., Auer I., & Böhm R. (2009). Endberichte HOM-OP Austria Aufbau und Installierung eines Tools zur operationellen Homogenisierung von Klimadaten mit 3 Annexen.Google Scholar
  68. Guerova, G., Jones, J., Douša, J., Dick, G., de Haan, S., Pottiaux, E., Bock, O., Pacione, R., Elgered, G., Vedel, H., & Bender, M. (2016). Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmospheric Measurement Techniques, 9, 5385–5406.  https://doi.org/10.5194/amt-9-5385-2016.CrossRefGoogle Scholar
  69. Győri, G., & Douša, J. (2016). GOP-TropDB developments for tropospheric product evaluation and monitoring – Design, functionality and initial results. IAG Symposia Series, Springer, 143, 595–602.Google Scholar
  70. Haase, J., Ge, M., Vedel, H., & Calais, E. (2003). Accuracy and variability of GPS tropospheric delay measurements of water vapour in the Western Mediterranean. Journal of Applied Meteorology, 42(11), 1547–1568.CrossRefGoogle Scholar
  71. Hagemann, S., Bengtsson, L., & Gendt, G. (2003). On the determination of atmospheric water vapour from GPS measurements. Journal of Geophysical Research, 108(D21), 4678.  https://doi.org/10.1029/2002JD003235.CrossRefGoogle Scholar
  72. Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1–4), 182–196.  https://doi.org/10.1016/S0022-1694(97)00125-X.CrossRefGoogle Scholar
  73. Hasegawa, S., & Stokesberry, D. (1975). Automatic digital microwave hygrometer. The Review of Scientific Instruments, 46, 867–873.  https://doi.org/10.1063/1.1134331.CrossRefGoogle Scholar
  74. Healy, S. B. (2011). Refractivity coefficients used in the assimilation of GPS radio occultation measurements. Journal of Geophysical Research, 116, D01106.  https://doi.org/10.1029/2010JD014013.CrossRefGoogle Scholar
  75. Heinkelmann, R., Willis, P., Deng, Z., Dick, G., Nilsson, T., Soja, B., Zus, F., Wickert, J., & Schuh, H. (2016). The effect of the temporal resolution of atmospheric gradients on atmospheric parameters. Advances in Space Research, 58(12), 2758–2773.  https://doi.org/10.1016/j.asr.2016.09.023.CrossRefGoogle Scholar
  76. Heise, S., Bender, M., Beyerle, G., Dick, G., Gendt, G., Schmidt, T., & Wickert, J. (2009). Integrated water vapor from IGS ground-based GPS observations: Initial results from a global 5-minute data set. (Geophysical Research Abstracts, Vol. 11, EGU2009-5330), General Assembly European Geosciences Union (Vienna, Austria 2009).Google Scholar
  77. Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J. L., et al. (2006). The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dynamics, 27(7–8), 787–813.CrossRefGoogle Scholar
  78. Hourdin, F., Foujols, M. A., Codron, F., Guemas, V., Dufresne, J. L., Bony, S., et al. (2013a). Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Climate Dynamics, 40(9–10), 2167–2192.CrossRefGoogle Scholar
  79. Hourdin, F., Grandpeix, J. Y., Rio, C., Bony, S., Jam, A., Cheruy, F., et al. (2013b). LMDZ5B: The atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Climate Dynamics, 40(9–10), 2193–2222.CrossRefGoogle Scholar
  80. ICAO. (1993). Manual of the ICAO standard atmosphere, Doc 7488/3 (3rd ed.). International Civil Aviation Organisation, Montreal.Google Scholar
  81. IGSMAIL-6298, Reprocessed IGS Trop Product now available with Gradients. (2012, November 11). http://igscb.jpl.nasa.gov/pipermail/igsmail/2010/007488.html
  82. Ingleby, N. B. (1995). Assimilation of station level pressure and errors in station height. Weather and Forecasting 10: 172-182.CrossRefGoogle Scholar
  83. Jaruskova, D. (1997). Some problems with application of change-point detection methods to environmental data. Environmetrics, 8(5), 469–483.CrossRefGoogle Scholar
  84. Järvinen, J. and Undén, P. (1997) Observation screening and background quality control in the ECMWF 3D Var data assimilation system. Technical memorandum of the European Centre for Medium-Range Weather Forecasts, 1997, Vol. 236.Google Scholar
  85. Jeong, J.-H., Walther, A., Nikulin, G., Chen, D., & Jones, C. (2011). Diurnal cycle of precipitation amount and frequency in Sweden: Observation versus model simulation. Tellus A, 63, 664–674.  https://doi.org/10.1111/j.1600-0870.2011.00517.x.CrossRefGoogle Scholar
  86. Jiang, J. H., Su, H., Zhai, C., Perun, V. S., Del Genio, A., Nazarenko, L. S., et al. (2012). Evaluation of cloud and water vapour simulations in CMIP5 climate models using NASA “A-Train” satellite observations. Journal of Geophysical Research: Atmospheres, 117(D14).Google Scholar
  87. Joshi, S., Kumar, K., Pande, B., & Pant, M. C. (2013). GPS-derived precipitable water vapour and its comparison with MODIS data for Almora, Central Himalaya, India. Meteorology and Atmospheric Physics, 120, 177–187.  https://doi.org/10.1007/s00703-013-0242-z.CrossRefGoogle Scholar
  88. Kalakoski, N., Kujanpää, J., Sofieva, V., Tamminen, J., Grossi, M., & Valks, P. (2016). Validation of GOME-2/Metop total column water vapour with ground-based and in situ measurements. Atmospheric Measurement Techniques, 9, 1533–1544.  https://doi.org/10.5194/amt-9-1533-2016.CrossRefGoogle Scholar
  89. Kestin, J., Sengers, J. V., Kamgar-Parsi, B., & Sengers, J. L. (1984). Thermophysical properties of fluid H2O. Journal of Physical and Chemical Reference Data, 13(1), 175–183.CrossRefGoogle Scholar
  90. King, R. W., & Bock, Y. (2005). Documentation for the GAMIT GPS processing software release 10.2. Massachusetts Institute of Technology, Cambridge.Google Scholar
  91. King, R., Herring, T., & Mccluscy, S. (2010). Documentation for the GAMIT GPS analysis software 10.4. Technical Report. Massachusetts Institute of Technology, Cambridge, MA, USA.Google Scholar
  92. Klos, A., Bogusz, J., Figurski, M., & Kosek, W.. (2015) On the handling of outliers in the GNSS time series by means of the noise and probability analysis. In C. Rizos, & P. Willis (Eds.), IAG 150 Years. International Association of Geodesy Symposia (Vol. 143). Cham: Springer.Google Scholar
  93. Kouba J (2003) A guide to using International GPS Service (IGS) products. Pasadena: IGS Central Bureau (available at http://igscb.jpl.nasa.gov/igscb/resource/pubs/GuidetoUsingIGSProducts.pdf)
  94. Kwon, H-. T., Iwabuchi, T., & Lim, G. –H. (2007). Comparison of precipitable water derived from ground-based GPS measurements with radiosonde observations over the Korean Peninsula. Journal of the Meteorological Society of Japan Series II, 85(6), 733–746.Google Scholar
  95. Lagler, K., Schindelegger, M., Böhm, J., Krásná, H., & Nilsson, T. (2013). GPT2: Empirical slant delay model for radio space geodetic techniques. Geophysical Research Letters, 40, 1069–1073.  https://doi.org/10.1002/grl.50288.CrossRefGoogle Scholar
  96. Lanzante, J. (1996). Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data. International Journal of Climatology, 16, 1197–1226.CrossRefGoogle Scholar
  97. Leduc, D. J. (1987). A comparative analysis of the reduced major axis technique of fitting lines to bivariate data. Canadian Journal of Forest Research, 17, 654–659.CrossRefGoogle Scholar
  98. Li, X., Zus, F., Lu, C., Ning, T., Dick, G., Ge, M., Wickert, J., & Schuh, H. (2015). Retrieving high-resolution tropospheric gradients from multiconstellation GNSS observations. Geophysical Research Letters, 42(10), 4173–4181.CrossRefGoogle Scholar
  99. Liu, H., Shah, S., & Jiang, W. (2004). On-line outlier detection and data cleaning. Computers and Chemical Engineering, 28(9), 1635–1647.  https://doi.org/10.1016/j.compchemeng.2004.01.009.CrossRefGoogle Scholar
  100. Martínez, M. A., & Calbet, X. (2016). Algorithm theoretical basis document for the clear air products processor of the NWC/GEO. [online] Available from: http://www.nwcsaf.org/AemetWebContents/ScientificDocumentation/Documentation/GEO/v2016/NWC-CDOP2-GEO-AEMET-SCI-ATBD-ClearAir_v1.1.pdf
  101. Meindl, M., Schaer, S., Hugentobler, U., & Beutler, G. (2004). Tropospheric gradient estimation at CODE: Results from global solutions. Journal of the Meteorological Society of Japan, 82, 331–338.CrossRefGoogle Scholar
  102. Mestre, O., Gruber, C., Prieur, C., Caussinus, H., & Jourdain, S. (2011). SPLIDHOM: A method for homogenization of daily temperature observations. Journal of Applied Meteorology and Climatology, 50, 2343–2358.CrossRefGoogle Scholar
  103. Mieruch, S., Schröder, M., Noël, S., & Schulz, J. (2014). Comparison of decadal global water vapour changes derived from independent satellite time series. Journal of Geophysical Research – Atmospheres, 119(22), 12489–12499.  https://doi.org/10.1002/2014JD021588.CrossRefGoogle Scholar
  104. Miller, M. A., & Slingo, A. (2007). The arm mobile facility and its first international deployment: Measuring radiative flux divergence in West Africa. Bulletin of the American Meteorological Society, 88, 1229–1244.  https://doi.org/10.1175/BAMS-88-8-1229.CrossRefGoogle Scholar
  105. Mircheva, B., Tsekov, M., Meyer, U., & Guerova, G. (2017). Anomalies of hydrological cycle components during the 2007 heat wave in Bulgaria. Journal of Atmospheric and Solar-Terrestrial Physics, 165-166, 1–9.  https://doi.org/10.1016/j.jastp.2017.10.005.CrossRefGoogle Scholar
  106. Morel, L., Pottiaux, E., Durand, F., Fund, F., Follin, J. M., Durand, S., Bonifac, K., Oliveira, P. S., van Baelen, J., Montibert, C., Cavallo, T., Escaffit, R., & Fragnol, L. (2015). Global validity and behaviour of tropospheric gradients estimated by GPS. Presentation at the 2nd GNSS4SWEC Workshop held in Thessaloniki, Greece, May 11–14.Google Scholar
  107. Morland, J., Liniger, M. A., Kunz, H., Balin, I., Nyeki, S., Mätzler, C., & Kämpfer, N. (2006). Comparison of GPS and ERA40 IWV in the Alpine region, including correction of GPS observations at Jungfraujoch (3584 m). Journal of Geophysical Research, 111, D04102.  https://doi.org/10.1029/2005JD006043.CrossRefGoogle Scholar
  108. Munn, R. E. (1966). Descriptive micrometeorology. New York: Academic Press.Google Scholar
  109. Nahmani, S., & Bock, O. (2014). Sensitivity of GPS measurements and estimates during extreme meteorological events: The issue of stochastic constraints used for ZWD estimation in West Africa. Joint ES1206 MC and MC meeting, Golden Sands Resort, 11/09/2014 to 12/09/2014, Varna, Bulgaria.Google Scholar
  110. Nahmani, S., Rebischung, P., & Bock, O. (2016). Statistical modelling of ZWD in GNSS processing. 3rd ES1206 Workshop, Rugbrauðsgerdin, 08-03-2016 to 10-03-2016, Reykjavik, Iceland.Google Scholar
  111. Nahmani, S., Rebischung, P., & Bock, O. (2017). Bayesian approach to apply optimal constraints on tropospheric parameters in GNSS data processing: Implications for meteorology. ES1206 Final Workshop, ESTEC, 2017-02-21 to 2017-02-23. Noordwijk, Netherlands.Google Scholar
  112. Niell, A. E. (1996) Global mapping functions for the atmospheric delay at radio wavelengths, Journal of Geophysical Research, 101(B2), doi:  https://doi.org/10.1029/95JB03048, 1996, pp 3227–3246.CrossRefGoogle Scholar
  113. Niell, A. E. (2000). Improved atmospheric mapping functions for VLBI and GPS. Earth Planet Sp, 52, 699–702.  https://doi.org/10.1186/BF03352267.CrossRefGoogle Scholar
  114. Nilsson, T., Soja, B., Karbon, M., Heinkelmann, R., & Schuh, H. (2015). Application of Kalman filtering in VLBI data analysis. Earth, Planets and Space, 67(136), 1–9.  https://doi.org/10.1186/s40623-015-0307-y.CrossRefGoogle Scholar
  115. Ning, T., & Elgered, G. (2012). Trends in the atmospheric water vapour content from ground-based GPS: the impact of the elevation cutoff angle. IEEE J-STARS, 5(3), 744–751.  https://doi.org/10.1109/JSTARS.2012.2191392.CrossRefGoogle Scholar
  116. Ning, T., Elgered, G., & Johansson, J. (2011). The impact of microwave absorber and radome geometries on GNSS measurements of station coordinates and atmospheric water vapour. Advances in Space Research, 47, 186–196.CrossRefGoogle Scholar
  117. Ning, T., Haas, R., Elgered, G., & Willén, U. (2012). Multi-technique comparisons of 10 years of wet delay estimates on the west coast of Sweden. Journal of Geodesy, 86, 565–575.  https://doi.org/10.1007/s00190-011-0527-2.CrossRefGoogle Scholar
  118. Ning, T., Elgered, G., Willén, U., & Johansson, J. M. (2013). Evaluation of the atmospheric water vapour content in a regional climate model using ground-based GPS measurements. Journal of Geophysical Research, 118, 1–11.  https://doi.org/10.1029/2012JD018053.CrossRefGoogle Scholar
  119. Ning, T., Wang, J., Elgered, G., Dick, G., Wickert, J., Bradke, M., Sommer, M., Querel, R., and Smale, D. (2016a) The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations, Atmospheric Measurement Techniques, 9, 79–92, doi: https://doi.org/10.5194/amt-9-79-2016 (licensed under CC BY 3.0, https://creativecommons.org/licenses/by/3.0/).
  120. Ning, T., Wickert, J., Deng, Z., Heise, S., Dick, G., Vey, S., & Schöne, T. (2016b). Homogenized Time Series of the Atmospheric Water Vapour Content Obtained from the GNSS Reprocessed Data. Journal of Climate, 29, 2443–2456.  https://doi.org/10.1175/JCLI-D-15-0158.1.CrossRefGoogle Scholar
  121. Ning, T., Elgered, G., & Heise, S. (2017). Trends in the atmospheric water vapour estimated from two decades of ground-based GPS data: Sensitivity to the elevation cutoff angle. In Proceedings of 6th international colloquium scientific and fundamental aspects of the Galileo programme, Valencia, Spain, 25–27 October 2017.Google Scholar
  122. Ningombam, S. S., Jade, S., Shrungeshwara, T. S., & Song, H.-J. (2016). Validation of water vapour retrieval from Moderate Resolution Imaging Spectro-radiometer (MODIS) in near infrared channels using GPS data over IAO-Hanle, in the trans-Himalayan region. Journal of Atmospheric and Solar-Terrestrial Physics, 137, 76–85,. ISSN 1364-6826.  https://doi.org/10.1016/j.jastp.2015.11.019.CrossRefGoogle Scholar
  123. Nyeki, S., Vuilleumier, L., Morland, J., Bokoye, A., Viatte, P., Mätzler, C., & Kämpfer, N. (2005). A 10-year integrated atmospheric water vapour record using precision filter radiometers at two high-alpine sites. Geophysical Research Letters, 32, L23803.  https://doi.org/10.1029/2005GL024079.CrossRefGoogle Scholar
  124. Ohtani, R., & Naito, I. (2000). Comparisons of GPS-derived precipitable water vapors with radiosonde observations in Japan. Journal of Geophysical Research, 105(D22), 26917–26929.  https://doi.org/10.1029/2000JD900362.CrossRefGoogle Scholar
  125. Owens, J. C. (1967). Optical Refractive Index of Air: Dependence on Pressure, Temperature and Composition. Applied Optics, 6(1), 51–59.CrossRefGoogle Scholar
  126. Pacione R., & Douša J. (2017). SINEX-TRO V2.00 format description, COST Action 1206 Final Report, J. Jones et al eds.Google Scholar
  127. Pacione, R., Pace, B., de Haan, S., Vedel, H., Lanotte, R., & Vespe, F. (2011). Combination methods of tropospheric time series. Advances in Space Research, 47, 323–335.  https://doi.org/10.1016/j.asr.2010.07.021.CrossRefGoogle Scholar
  128. Pacione, R., Pace, B., & Bianco, G.. (2014a). Homogeneously reprocessed ZTD long-term time series over Europe, EGU GA 2014. http://meetingorganizer.copernicus.org/EGU2014/EGU2014-2945.pdf
  129. Pacione, R., O. Bock, & Douša, J. (2014b). GNSS atmospheric water vapor retrieval methods. COST Action ES1206 – GNSS4SWEC, 1st Workshop, Munich, 26–28 February 2014.Google Scholar
  130. Pacione, R., Araszkiewicz, A., Brockmann E., & Douša J. (2017). EPN-Repro2: a reference tropospheric data set over Europe, Atmospheric Measurement Techniques, 10, 1689–1705,  https://doi.org/10.5194/amt-10-1689-2017 (licensed under CC BY 3.0, https://creativecommons.org/licenses/by/3.0/)..CrossRefGoogle Scholar
  131. Parracho, A. (2017). Study of trends and variability of atmospheric integrated water vapour with climate models and observations from global GNSS network. PhD report from Université Pierre et Marie Curie, Paris, France.Google Scholar
  132. Parracho, A. C., Bock, O., & Bastin, S. (2018). Global IWV trends and variability in atmospheric reanalyses and GPS observations, Atmospheric Chemistry and Physics Discussions. https://doi.org/10.5194/acp-2018-137, in review (licensed under CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).Google Scholar
  133. Pérez-Ramírez, D., Whiteman, D. N., Smirnov, A., Lyamani, H., Holben, B. N., Pinker, R., Andrade, M., & Alados-Arboledas, L. (2014). Evaluation of AERONET precipitable water vapour versus microwave radiometry, GPS, and radiosondes at ARM sites. Journal of Geophysical Research – Atmospheres, 119, 9596–9613.  https://doi.org/10.1002/2014JD021730.CrossRefGoogle Scholar
  134. Petit, G., & Luzum, B. (2010). IERS Conventions, 2010. IERS Technical Note No. 36. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, ISBN 3-89888-989-6.Google Scholar
  135. Pettitt, A. N. (1979). A nonparametric approach to the change-point problem. Applied Statistics, 28, 126–135.  https://doi.org/10.2307/2346729.CrossRefGoogle Scholar
  136. Pierce, D. W., Barnett, T. P., AchutaRao, K. M., Gleckler, P. J., Gregory, J. M., & Washington, W. M. (2006). Anthropogenic warming of the oceans: Observations and model results. Journal of Climate, 19(10), 1873–1900.CrossRefGoogle Scholar
  137. Prasad, A. K., & Singh, R. P. (2009). Validation of MODIS Terra, AIRS, NCEP/DOE AMIP-II Reanalysis-2, and AERONET Sun photometer derived integrated precipitable water vapour using ground-based GPS receivers over India. Journal of Geophysical Research, 114, D05107.  https://doi.org/10.1029/2008JD011230.CrossRefGoogle Scholar
  138. Román, R., Antón, M., Cachorro, V. E., Loyola, D., Ortiz de Galisteo, J. P., de Frutos, A., & Romero-Campos, P. M. (2015). Comparison of total water vapour column from GOME-2 on MetOp-A against ground-based GPS measurements at the Iberian Peninsula. Science of the Total Environment, 533, 317–328,. ISSN 0048-9697.  https://doi.org/10.1016/j.scitotenv.2015.06.124.CrossRefGoogle Scholar
  139. Rüeger, J. (2002) Refractive index formulae for electronic distance measurements with radio and millimetre waves. Unisurv Rep. 109, pp. 758–766, Univerity of New South Wales, Sydney, Australia.Google Scholar
  140. Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The use of artificial satellites for geodesy, American Geophysics Union. Geophysics Monograph Series, 15, 274–251.Google Scholar
  141. Schmid, R., Dach, R., Collilieux, X., Jäggi, A., Schmitz, M., & Dilssner, F. (2016). Absolute IGS antenna phase center model igs08.atx: status and potential improvements. Journal of Geodesy, 90, 343–364.  https://doi.org/10.1007/s00190-015-0876-3.CrossRefGoogle Scholar
  142. Schneider, M., Romero, P. M., Hase, F., Blumenstock, T., Cuevas, E., & Ramos, R. (2010). Continuous quality assessment of atmospheric water vapour measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92. Atmospheric Measurement Techniques, 3, 323–338.  https://doi.org/10.5194/amt-3-323-2010.CrossRefGoogle Scholar
  143. Schröder, M., Lockhoff, M., Forsythe, J. M., Cronk, H. Q., Vonder Haar, T. H., & Bennartz, R. (2016). The GEWEX water vapour assessment: Results from intercomparison, trend, and homogeneity analysis of total column water vapour. Journal of Applied Meteorology and Climatology, 55, 1633–1649.  https://doi.org/10.1175/JAMC-D-15-0304.1.CrossRefGoogle Scholar
  144. Selle, C. & Desai, S. (2016). Optimization of tropospheric delay estimation parameters by comparison of GPS-based precipitable water vapour estimates with microwave radiometer measurements. IGS Workshop 2016, 8–12 February 2016, Sydney, NSW, Australia.Google Scholar
  145. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389,. JSTOR 2285891, MR 0258201.  https://doi.org/10.2307/2285891.CrossRefGoogle Scholar
  146. Smith, E., & Weintraub, S. (1953). The constants in the equation for atmospheric refractive index at radio frequencies. Proceedings of the IRE, 41, 1035–1037.CrossRefGoogle Scholar
  147. Soden, B. J., Jackson, D. L., Ramaswamy, V., Schwarzkopf, M. D., & Huang, X. (2005). The radiative signature of upper tropospheric moistening. Science, 310(5749), 841–844.CrossRefGoogle Scholar
  148. Sohn, D.-H., Park, K.-D., Won, J., Cho, J., & Roh, K.-M. (2012). Comparison of the characteristics of precipitable water vapour measured by Global Positioning System and microwave radiometer. Journal of Astronomy Space Science, 29, 1–10.  https://doi.org/10.5140/JASS.2012.29.1.001.CrossRefGoogle Scholar
  149. Steigenberger, P., Boehm, J., & Tesmer, V. (2009). Comparison of GMF/GPT with VMF1/ECMWF and Implications for Atmospheric Loading. Journal of Geodesy, 83, 943–951.  https://doi.org/10.1007/s00190-009-0311-8.CrossRefGoogle Scholar
  150. Steigenberger, P., Lutz, S., Dach, R., Schaer, S., & Jäggi, A. (2014). CODE repro2 product series for the IGS. Published by Astronomical Institute, University of Bern. URL: http://www.aiub.unibe.ch/download/REPRO_2013;  https://doi.org/10.7892/boris.75680.
  151. Stepniak, K., Bock, O., & Wielgosz, P. (2015). Assessment of ZTD screening methods and analysis of water vapour variability over Poland. 2nd COST GNSS4SWEC Workshop, Thessaloniki, Greece, 11–14 May 2015.Google Scholar
  152. Stepniak, K., Bock, O., & Wielgosz, P. (2016). Improved methods for reprocessing of GNSS data for climate monitoring over Poland. Presented at 3rd ES1206 Workshop, 8–11.03.2016, Reykjavik, Iceland.Google Scholar
  153. Stepniak, K., Bock, O., & Wielgosz, P. (2017). Reduction of ZTD outliers through improved GNSS data processing and screening strategies. Atmospheric Measurement Techniques Discussions.  https://doi.org/10.5194/amt-2017-371, 2017 (licensed under CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).
  154. Thayer, G. (1974). An improved equation for the refractive index of air. Radio Science, 9(10), 803–807.  https://doi.org/10.1029/RS009i010p00803.CrossRefGoogle Scholar
  155. Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis, I, II, III, Nederl. Akad Wetensch Proceedings, 53, 386–392, 521–525, 1397–1412, MR 0036489.  https://doi.org/10.1007/978-94-011-2546-8_20.CrossRefGoogle Scholar
  156. Thorne, P. W., & Vose, R. S. (2010). Reanalyses suitable for characterizing long-term trends: Are they really achievable? Bulletin of the American Meteorological Society, 91(3), 353–361.CrossRefGoogle Scholar
  157. Torres, B., Cachorro, V. E., Toledano, C., Ortiz de Galisteo, J. P., Berjón, A., de Frutos, A. M., Bennouna, Y., & Laulainen, N. (2010). Precipitable water vapour characterization in the Gulf of Cadiz region (southwestern Spain) based on Sun photometer, GPS, and radiosonde data. Journal of Geophysical Research, 115, D18103.  https://doi.org/10.1029/2009JD012724.CrossRefGoogle Scholar
  158. Tregoning, P., & Watson, C. (2009). Atmospheric effects and spurius signals in GPS analyses. Journal of Geophysical Research, 114.  https://doi.org/10.1029/2009JB006344.
  159. Trenberth, K. E., Fasullo, J., & Smith, L. (2005). Trends and variability in column-integrated atmospheric water vapour. Climate Dynamics, 24(7–8), 741–758.  https://doi.org/10.1007/s00382-005-0017-4.CrossRefGoogle Scholar
  160. Urban, J. (2013). Satellite sensors measuring atmospheric water vapour. In Monitoring Atmospheric Water Vapour, ISSI Scientific Report Series, 10, Kämpfer, N.  https://doi.org/10.1007/978-1-4614-3909-7_9.Google Scholar
  161. Václavovic, P., & Douša, J. (2016) G-Nut/Anubis – Open-source tool for multi-GNSS data monitoring. In Ch. Rizos, & P. Willis (Eds.), IAG 150 Years. IAG Symposia Series (Vol. 143, pp. 775–782). Springer.Google Scholar
  162. Van Malderen, R., Brenot, H., Pottiaux, E., Beirle, S., Hermans, C., De Mazière, M., Wagner, T., De Backer, H., & Bruyninx, C. (2014). A multi-site intercomparison of integrated water vapour observations for climate change analysis. Atmospheric Measurement Techniques, 7, 2487–2512.  https://doi.org/10.5194/amt-7-2487-2014.CrossRefGoogle Scholar
  163. Vaquero-Martínez, J., Antón, M., Pablo Ortiz de Galisteo, J., Cachorro, V. E., Costa, M. J., Román, R., & Bennouna, Y. S. (2017a). Validation of MODIS integrated water vapour product against reference GPS data at the Iberian Peninsula. International Journal of Applied Earth Observation and Geoinformation, 63, 214–221,. ISSN 0303-2434.  https://doi.org/10.1016/j.jag.2017.07.008.CrossRefGoogle Scholar
  164. Vaquero-Martínez, J., Antón, M., Pablo Ortiz de Galisteo, J., Cachorro, V. E., Wang, H., Abad, G. G., Román, R., & Costa, M. J. (2017b). Validation of integrated water vapour from OMI satellite instrument against reference GPS data at the Iberian Peninsula. Science of the Total Environment, 580, 857–864,. ISSN 0048-9697.  https://doi.org/10.1016/j.scitotenv.2016.12.032.CrossRefGoogle Scholar
  165. Vaquero-Martínez, J., Antón, M., de Galisteo, J. P. O., Victoria E. Cachorro, Álvarez-Zapatero, P., Román, R., Loyola, D., Costa, M. J., Wang, H., Abad, G. G., & Noël, S. (2017c) Inter-comparison of integrated water vapour from satellite instruments using reference GPS data at the Iberian Peninsula. In Remote Sensing of Environment. ISSN 0034-4257.  https://doi.org/10.1016/j.rse.2017.09.028 CrossRefGoogle Scholar
  166. Vázquez B, G. E., & Grejner-Brzezinska, D. A. (2013). GPS-PWV estimation and validation with radiosonde data and numerical weather prediction model in Antarctica. GPS Solutions, 17, 29–39.  https://doi.org/10.1007/s10291-012-0258-8.CrossRefGoogle Scholar
  167. Venema, V. K. C., Mestre, O., Aguilar, E., Auer, I., Guijarro, J. A., Domonkos, P., Vertacnik, G., Szentimrey, T., Stepanek, P., Zahradnicek, P., Viarre, J., Müller-Westermeier, G., Lakatos, M., Williams, C. N., Menne, M. J., Lindau, R., Rasol, D., Rustemeier, E., Kolokythas, K., Marinova, T., Andresen, L., Acquaotta, F., Fratianni, S., Cheval, S., Klancar, M., Brunetti, M., Gruber, C., Prohom Duran, M., Likso, T., Esteban, P., & Brandsma, T. (2012). Benchmarking homogenization algorithms for monthly data. Climate of the Past, 8, 89–115.  https://doi.org/10.5194/cp-8-89-2012.CrossRefGoogle Scholar
  168. Vey, S., Dietrich, R., Fritsche, M., Rülke, A., Rothacher, M., & Steigenberger, P. (2006). Influence of mapping functions parameters on global GPS network analyses: Comparison between NMF and IMF. Geophysical Research Letters, 33, L01814.  https://doi.org/10.1029/2005GL024361.CrossRefGoogle Scholar
  169. Vey, S., Dietrich, R., Fritsche, M., Rülke, A., Steigenberger, P., & Rothacher, M. (2009). On the homogeneity and interpretation of precipitable water time series derived from global GPS observations. Journal of Geophysical Research, 114, D10101.  https://doi.org/10.1029/2008JD010415.CrossRefGoogle Scholar
  170. Vey, S., Dietrich, R., Rülke, A., Fritsche, M., Steigenberger, P., & Rothacher, M. (2010). Validation of precipitable water vapour within the NCEP/DOE reanalysis using global GPS observations from one decade. Journal of Climate, 23, 1675–1695.  https://doi.org/10.1175/2009JCLI2787.1.CrossRefGoogle Scholar
  171. Vincent, L. A., Zhang, X., Bonsal, B. R., & Hogg, W. D. (2002). Homogenization of daily temperatures over Canada. Journal of Climate, 15, 1322–1334.  https://doi.org/10.1175/1520-0442(2002)015<1322:HODTOC>2.0.CO;2.CrossRefGoogle Scholar
  172. Voelksen, C. (2011). An update on the EPN reprocessing project: Current achievements and status. Presented at EUREF 2011 symposium, 25–28 May 2011, Chisinau, Republic of Moldova. Available at: http://www.epncb.oma.be/_documentation/papers/eurefsymposium2011/an_update_on_epn_reprocessing_project_current_
  173. Von Neumann, J. (1941). Distribution of the ratio of the mean square successive difference to the variance. Annals of Mathematical Statistics, 13, 367–395.CrossRefGoogle Scholar
  174. Wang, J., Zhang, L., & Dai, A. (2005). Global estimates of water-vapour-weighted mean temperature of the atmosphere for GPS applications. Journal of Geophysical Research: Atmosphers, 110(D21).Google Scholar
  175. Wang, J., Zhang, L., Dai, A., Van Hove, T., & Van Baelen, J. (2007a). A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. Journal of Geophysical Research, 112, D11107.  https://doi.org/10.1029/2006JD007529.CrossRefGoogle Scholar
  176. Wang, X. L., Wen, Q. H., & Wu, Y. (2007b). Penalized maximal t test for detecting undocumented mean change in climate data series. Journal of Applied Meteorology and Climatology, 46, 916–931.  https://doi.org/10.1175/JAM2504.1.CrossRefGoogle Scholar
  177. Wang, J., Zhang, L., Dai, A., Van Hove, T., & Van Baelen, J. (2007c). A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. Journal of Geophysical Research, 112, D11107.  https://doi.org/10.1029/2006JD007529.CrossRefGoogle Scholar
  178. Wang, H., Gonzalez Abad, G., Liu, X., & Chance, K. (2016a). Validation and update of OMI total column water vapour product. Atmospheric Chemistry and Physics, 16, 11379–11393.  https://doi.org/10.5194/acp-16-11379-2016.CrossRefGoogle Scholar
  179. Wang, X., Zhang, K., Wu, S., Fan, S., & Cheng, Y. (2016b). Water vapour-weighted mean temperature and its impact on the determination of precipitable water vapour and its linear trend. Journal of Geophysical Research – Atmospheres, 121, 833–852.  https://doi.org/10.1002/2015JD024181.CrossRefGoogle Scholar
  180. Wang, X., Zhang, K., Wu, S., He, C., Cheng, Y., & Li, X. (2017). Determination of zenith hydrostatic delay and its impact on GNSS-derived integrated water vapour. Atmospheric Measurement Techniques, 10, 2807–2820.  https://doi.org/10.5194/amt-10-2807-2017.CrossRefGoogle Scholar
  181. Webb, F. H. and Zumberge, J. F. (1997) An introduction to GIPSY/OASIS II, Jet Propulsion Laboratory Document JPL D-11088. California Institute of Technology.Google Scholar
  182. Wijngaard, J. B., Klein Tank, A. M. G., & Können, G. P. (2003). Homogeneity of 20th century European daily temperature and precipitation series. International Journal of Climatology, 23, 679–692.  https://doi.org/10.1002/joc.906.CrossRefGoogle Scholar
  183. Willis, P., Gobinddass, M.-L., Garayt, B., & Fagard, H. (2012). Recent improvements in DORIS data processing in view of ITRF2008, the ignwd08 solution. IAG Symposium, 136, 43–49.  https://doi.org/10.1007/978-3-642-20338-1_6.CrossRefGoogle Scholar
  184. Willis, P., Bock, O., & Bar-Sever, Y. E. (2014). DORIS tropospheric estimation at IGN: current strategies, GPS intercomparisons and perspectives. IAG Symposium, 139, 11–18.  https://doi.org/10.1007/978-3-642-37222-3_2.CrossRefGoogle Scholar
  185. Willis, P., Heflin, M. B., Haines, B. J., Bar-Sever, Y. E., Bertiger, W. B., & Mandea, M. (2016a). Is the Jason2 DORIS oscillator still affected by the South Atlantic Anomaly? Advances in Space Research, 58(12), 2617–2627.  https://doi.org/10.1016/j.asr.2016.09.015.CrossRefGoogle Scholar
  186. Willis, P., Zelensky, N. P., Ries, J. C., Soudarin, L., Cerri, L., Moreaux, G., Lemoine, F. G., Otten, M., Argus, D. F., & Heflin, M. B. (2016b). DPOD2008, A DORIS-oriented terrestrial reference frame for precise orbit determination. IAG Symposium, 143, 175–181.  https://doi.org/10.1007/1345_2015_125.CrossRefGoogle Scholar
  187. Wolter, K., & Timlin, M. S. (1993) Monitoring ENSO in COADS with a seasonally adjusted principal component index. In Proceedings of the 17th climate diagnostics workshop (Vol. 5257).Google Scholar
  188. Wolter, K., & Timlin, M. S. (1998). Measuring the strength of ENSO events: How does 1997/98 rank? Weather, 53(9), 315–324.  https://doi.org/10.1002/j.1477-8696.1998.tb06408.x.CrossRefGoogle Scholar
  189. Yao, Y.-C., & Davis, R. A. (1986). The asymptotic behaviour of the likelihood ratio statistic for testing a shift in mean in a sequence of independent normal variates. Sankhya, 48, 339–353.Google Scholar
  190. Zumberge, J. F., Heflin, M. B., Jefferson, D. C., & Watkins, M. M. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research – Solid Earth, 102, 5005–5017.CrossRefGoogle Scholar
  191. Zus, F., Dick, G., Douša, J., Heise, S., & Wickert, J. (2014). The rapid and precise computation of GPS slant total delays and mapping factors utilizing a numerical weather model. Radio Science, 49, 207–216.  https://doi.org/10.1002/2013RS005280.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • O. Bock
    • 9
    Email author
  • R. Pacione
    • 26
  • F. Ahmed
    • 1
  • A. Araszkiewicz
    • 2
  • Z. Bałdysz
    • 2
  • K. Balidakis
    • 3
  • C. Barroso
    • 4
  • S. Bastin
    • 5
    • 6
  • S. Beirle
    • 7
  • J. Berckmans
    • 8
  • J. Böhm
    • 10
  • J. Bogusz
    • 2
  • M. Bos
    • 11
  • E. Brockmann
    • 12
  • M. Cadeddu
    • 13
  • B. Chimani
    • 14
  • J. Douša
    • 15
  • G. Elgered
    • 17
  • M. Eliaš
    • 16
  • R. Fernandes
    • 11
  • M. Figurski
    • 2
  • E. Fionda
    • 18
  • M. Gruszczynska
    • 2
  • G. Guerova
    • 19
  • J. Guijarro
    • 20
  • C. Hackman
    • 21
  • R. Heinkelmann
    • 3
  • J. Jones
    • 22
  • S. Zengin Kazancı
    • 23
  • A. Klos
    • 2
  • D. Landskron
    • 10
  • J. P. Martins
    • 4
  • V. Mattioli
    • 24
  • B. Mircheva
    • 19
  • S. Nahmani
    • 9
  • R. T. Nilsson
    • 3
  • T. Ning
    • 25
  • G. Nykiel
    • 2
  • A. Parracho
    • 9
  • E. Pottiaux
    • 27
  • A. Ramos
    • 28
  • P. Rebischung
    • 9
  • A. Sá
    • 29
  • W. Dorigo
    • 30
  • H. Schuh
    • 3
  • G. Stankunavicius
    • 31
  • K. Stępniak
    • 32
  • H. Valentim
    • 11
  • R. Van Malderen
    • 33
  • P. Viterbo
    • 4
  • P. Willis
    • 9
  • A. Xaver
    • 10
  1. 1.Geodesy and Geospatial Engineering, Institute of Civil Engineering and EnvironmentUniversity of LuxembourgLuxembourg CityLuxembourg
  2. 2.Centre of Applied GeomaticsWarsaw Military University of TechnologyWarszawaPoland
  3. 3.GFZ German Research Centre for GeosciencesPotsdamGermany
  4. 4.Instituto Português do Mar e da AtmosferaLisbonPortugal
  5. 5.Université Paris-SaclaySaint-AubinFrance
  6. 6.Sorbonne UniversitésParisFrance
  7. 7.Max-Planck-Institute for ChemistryMainzGermany
  8. 8.Royal Meteorological Institute of BelgiumBrusselsBelgium
  9. 9.IGN Institut national de l’information géographique et forestièreParisFrance
  10. 10.Department of Geodesy and GeoinformationTU WienWienAustria
  11. 11.University of Beira InteriorCovilhãPortugal
  12. 12.Swiss Federal Office of TopographyKönizSwitzerland
  13. 13.Argonne National LaboratoryLemontUSA
  14. 14.Central Institute for Meteorology and GeodynamicsVeinnaAustria
  15. 15.Geodetic Observatory Pecný, RIGTCOndřejovCzech Republic
  16. 16.Geodetic Observatory PecnýResearch Institute of Geodesy, Topography and CartographyOndřejovCzech Republic
  17. 17.Chalmers University of TechnologyGöteborgSweden
  18. 18.Fondazione Ugo BordoniRomeItaly
  19. 19.Physics Faculty, Department of Meteorology and GeophysicsSofia University “St. Kliment Ohridski”SofiaBulgaria
  20. 20.AEMETMadridSpain
  21. 21.United States Naval ObservatoryWashingtonUSA
  22. 22.Met OfficeExeterUK
  23. 23.Karadeniz Technical UniversityTrabzonTurkey
  24. 24.Centre of Excellence Telesensing of Environment and Model Prediction of Severe EventsUniversity of L’AquilaL’AquilaItaly
  25. 25.The Swedish Mapping, Cadastral and Land Registration AuthorityStockholmSweden
  26. 26.e-GEOS/Centro di Geodesia Spaziale-Agenzia Spaziale ItalianaMateraItaly
  27. 27.Royal Observatory of BelgiumBrusselsBelgium
  28. 28.Instituto Dom LuizUniversity of LisbonLisbonPortugal
  29. 29.Polytechnic Institute of GuardaGuardaPortugal
  30. 30.Department of Geodesy and GeoinformationTU WienWienAustria
  31. 31.Vilnius UniversityVilniusLithuania
  32. 32.Advanced Methods for Satellite Positioning LaboratoryUniversity of Warmia and Mazury in OlsztynOlsztynPoland
  33. 33.Royal Meteorological Institute of BelgiumBrusselsPortugal

Personalised recommendations