Presolar SiC Grains of Type AB with Isotopically Light Nitrogen: Contributions from Supernovae?

  • P. HoppeEmail author
  • Marco Pignatari
  • S. Amari
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 219)


Primitive solar system materials contain presolar grains that formed in the winds of evolved stars and in the ejecta of stellar explosions. Here, we report on NanoSIMS measurements of C-, N-, Al–Mg-, Si-, and S-isotopic compositions of 10 submicrometer-sized presolar SiC grains of Type AB from the Murchison meteorite. Except for one grain with the highest 12C/13C ratio we find good correlations between 12C/13C, 14N/15N, and 26Al/27Al. The correlations are well explained by a 25 M supernova (SN) model that considers H ingestion into the He shell. The comparison of our data with the SN model suggests that SNe might have contributed not only AB grains with heavy N, as suggested previously, but also some with light N.


Presolar grains Silicon carbide Supernovae 


  1. 1.
    E. Zinner, Presolar grains, in Meteorites and Cosmochemical Processes, Treatise on Geochemistry, vol. 1, ed. by A.M. Davis (Elsevier, Amsterdam, 2014), pp. 181–213CrossRefGoogle Scholar
  2. 2.
    M. Pignatari, E. Zinner, P. Hoppe, C.J. Jordan, B.K. Gibson, R. Trappitsch et al., Carbon-rich presolar grains from massive stars: Subsolar 12C/13C and 14N/15N ratios and the mystery of 15N. ApJ 808, L43 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    N. Liu, L.R. Nittler, M. Pignatari, C.M.O’D. Alexander, J. Wang, Stellar origin of 15N-rich presolar SiC grains of type AB: Supernovae with explosive hydrogen burning. ApJ 842, L1 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    S. Amari, L.R. Nittler, E. Zinner, K. Lodders, R.S. Lewis, Presolar SiC grains of type A and B: Their isotopic compositions and stellar origins. ApJ 559, 463–483 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    N. Liu, T. Stephan, P. Boehnke, L.R. Nittler, C.M.O’D. Alexander, J. Wang et al.: J-type carbon stars: a dominant source of 14N-rich presolar SiC grains of type AB. ApJ 844, L12 (2017)Google Scholar
  6. 6.
    S. Amari, R.S. Lewis, E. Anders, Interstellar grains in meteorites: I. Isolation of SiC, graphite, and diamond; size distributions of SiC and graphite. GCA 58, 459–470 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    P. Hoppe, S. Cohen, A. Meibom, NanoSIMS: Technical aspects and applications in cosmochemistry and biological geochemistry. Geost. Geoanal. Res. 37, 111–154 (2013)CrossRefGoogle Scholar
  8. 8.
    K.M. Hynes, F. Gyngard, The presolar grain database: LPS 40, #1198 (2009)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Max Planck Institute for ChemistryMainzGermany
  2. 2.E. A. Milne Centre for AstrophysicsUniversity of HullHullUK
  3. 3.McDonnell Center for the Space Sciences and Physics DepartmentWashington UniversitySt. LouisUSA
  4. 4.NuGrid CollaborationEast LansingUSA
  5. 5.JINA-CEEEast LansingUSA
  6. 6.Konkoly ObservatoryBudapestHungary

Personalised recommendations