The Chemical Composition of the Solar System

  • Katharina LoddersEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 219)


Elemental abundances in CI-chondrites are compared to recent photospheric data. Resulting issues for solar system abundances are noted.


Elemental abundances Sun Meteorites CI-chondrites Solar system 



Work supported by NSF AST1517541.


  1. 1.
    K. Lodders, B. Fegley, Chemistry of the Solar System (Oxford University Press, Oxford, 2011)Google Scholar
  2. 2.
    K. Lodders, Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    K. Lodders, H. Palme, H.P. Gail, Abundances of the elements in the solar system, in Landolt-Börnstein, New Series, Vol. VI/4B, Chap. 4.4, J.E. Trümper (ed.), (Springer-Verlag, Berlin, 2009), pp. 560–630Google Scholar
  4. 4.
    H. Palme, K. Lodders, A. Jones, Solar system abundances of the elements, in Treatise on Geochemistry, vol. 2(Elsevier, Amsterdam, 2014), pp. 15–36CrossRefGoogle Scholar
  5. 5.
    C. Allende Prieto, Solar and stellar photospheric abundances. Living Rev. Sol. Phys. 13, 1–40 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    H. Holweger, E.A. Mueller, The photospheric barium spectrum—Solar abundance and collision broadening of BA II lines by hydrogen. Solar Phys. 39, 19–30 (1974)ADSCrossRefGoogle Scholar
  7. 7.
    H. Holweger, Photospheric abundances: problems, updates, implications, in Solar and Galactic Composition. AIP Conference Proceedings, vol. 598, pp. 23–30 (2001)Google Scholar
  8. 8.
    M. Asplund, N. Grevesse, A.J. Sauval, P. Scott, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    E. Caffau, H.-G. Ludwig, M. Steffen, T.R. Ayres, P. Bonifacio, R. Cayrel, B. Freytag, B. Plez, The photospheric solar oxygen project. I. Abundance analysis of atomic lines and influence of atmospheric models. Astron. Astrophys. 488, 1031–1046 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    E. Caffau, H.G. Ludwig, M. Steffen, B. Freytag, P. Bonifacio, Solar chemical abundances determined with a CO5BOLD 3D model atmosphere. Sol. Phys. 268, 255–269 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    P. Scott, N. Grevesse, M. Asplund, A.J. Sauval, K. Lind, Y. Takeda, R. Collet, R. Trampedach, W. Hayek, The elemental composition of the Sun. I. The intermediate mass elements Na to Ca. Astron. Astrophys. 573, A25 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    P. Scott, M. Asplund, N. Grevesse, M. Bergemann, A.J. Sauval, The elemental composition of the Sun. II. The iron group elements Sc to Ni. Astron. Astrophys. 573, A26 (2015)CrossRefGoogle Scholar
  13. 13.
    N. Grevesse, P. Scott, N. Asplund, A.J. Sauval, The elemental composition of the Sun. III. The heavy elements Cu to Th. Astron. Astrophys. 573, idA27 (2015)CrossRefGoogle Scholar
  14. 14.
    S. Basu, H.M. Anita, Helioseismology and solar abundances. Phys. Rep. 457, 217–283 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    V.S. Heber, K.D. McKeegan, P. Bochsler, J. Duprat, D.S. Burnett, The elemental composition of solar wind with implications for fractionation processes during solar wind formation. LPSC 45, 2117 (2014)ADSGoogle Scholar
  16. 16.
    D.S. Burnett, Y. Guan, V.S. Heber et al., Solar nebula composition based on solar wind data. LPSC 48, 1532 (2017)ADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of Earth & Planetary Sciences and McDonnell Center for the Space SciencesWashington UniversitySaint LouisUSA

Personalised recommendations