Advertisement

A Transfer Learning Exploited for Indexing Protein Structures from 3D Point Clouds

  • Halim BenhabilesEmail author
  • Karim Hammoudi
  • Feryal Windal
  • Mahmoud Melkemi
  • Adnane Cabani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11379)

Abstract

In this paper, we propose a transfer learning-based methodology that can be exploited for indexing protein structures from associated 3D point clouds. Such a methodology can be particularly useful for biologists that are searching automated solutions to find family members of a query protein or even to label new structures by directly using input raw 3D point clouds. Comparative study and performance evaluation show the efficiency and the potential of the proposed methodology.

Keywords

Transfer learning Protein structure analysis Indexing 3D point clouds PDB Biomedical imaging 

Notes

Acknowledgments

The authors particularly thank F. Langenfeld, organizing member of the SCHREC 2018 challenge for his assistance and the double-check of the performance rates for our method presented in Table 1. They thank F. Malbranque, V. Tondeux, A. Jaffrezic and J. Xu for deploying the processing pipeline.

References

  1. 1.
    Benhabiles, H., Aubreton, O., Barki, H., Tabia, H.: Fast simplification with sharp feature preserving for 3D point clouds. In: 2013 11th International Symposium on Programming and Systems (ISPS), pp. 47–52, April 2013.  https://doi.org/10.1109/ISPS.2013.6581492
  2. 2.
    Berman, H.M., et al.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000).  https://doi.org/10.1093/nar/28.1.235MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chandonia, J.M., Fox, N.K., Brenner, S.E.: SCOPe: manual curation and artifact removal in the structural classification of proteins extended database. J. Mol. Biol. 429(3), 348–355 (2017).  https://doi.org/10.1016/j.jmb.2016.11.023. Computation Resources for Molecular BiologyCrossRefGoogle Scholar
  4. 4.
    Hegyi, H., Gerstein, M.: The relationship between protein structure and function: a comprehensive survey with application to the yeast genome. J. Mol. Biol. 288(1), 147–164 (1999).  https://doi.org/10.1006/jmbi.1999.2661. Edited by G. von HeijneCrossRefGoogle Scholar
  5. 5.
    Jin, X., Awale, M., Zasso, M., Kostro, D., Patiny, L., Reymond, J.L.: PDB-explorer: a web-based interactive map of the protein data bank in shape space. BMC Bioinform. 16(1), 339 (2015).  https://doi.org/10.1186/s12859-015-0776-9CrossRefGoogle Scholar
  6. 6.
    Langenfeld, F., et al.: SHREC 2018 protein shape retrieval. In: Eurographics Workshop on 3D Object Retrieval, pp. 53–61, April 2018.  https://doi.org/10.2312/3dor.20181053
  7. 7.
    Melo, R., et al.: A machine learning approach for hot-spot detection at protein-protein interfaces. Int. J. Mol. Sci. 17(8) (2016).  https://doi.org/10.3390/ijms17081215CrossRefGoogle Scholar
  8. 8.
    Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR). IEEE (2017)Google Scholar
  9. 9.
    Ritter, J.: An efficient bounding sphere. In: Graphics Gems, pp. 301–303. Academic Press Professional Inc., San Diego (1990)Google Scholar
  10. 10.
    Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: IEEE International Conference on Computer Vision, pp. 59–66, Bombay, India, 9–13 May 1998Google Scholar
  11. 11.
    Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011Google Scholar
  12. 12.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Proceedings Shape Modeling Applications, pp. 167–178 (2004).  https://doi.org/10.1109/SMI.2004.1314504
  13. 13.
    Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991).  https://doi.org/10.1007/BFb0038202CrossRefGoogle Scholar
  14. 14.
    Yang, H.: Protein surface analysis by dimension reduction with applications in functional annotation and drug target prediction. Ph.D. thesis, Drexel University (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Halim Benhabiles
    • 1
    Email author
  • Karim Hammoudi
    • 2
    • 3
  • Feryal Windal
    • 1
  • Mahmoud Melkemi
    • 2
    • 3
  • Adnane Cabani
    • 4
  1. 1.ISEN-Lille, Yncréa Hauts-de-FranceLilleFrance
  2. 2.Department of Computer Science, IRIMASUniversité de Haute-AlsaceMulhouseFrance
  3. 3.Université de StrasbourgStrasbourgFrance
  4. 4.Normandie University, UNIROUEN, ESIGELEC, IRSEEMRouenFrance

Personalised recommendations