Understanding the Central Great Plains as a Coupled Climatic-Hydrological-Human System: Lessons Learned in Operationalizing Interdisciplinary Collaboration

  • Marcellus CaldasEmail author
  • Martha Mather
  • Jason Bergtold
  • Melinda Daniels
  • Gabriel Granco
  • Joseph A. Aistrup
  • David Haukos
  • Aleksey Y. Sheshukov
  • Matthew R. Sanderson
  • Jessica L. Heier Stamm


This chapter discusses an interdisciplinary and transdisciplinary project to understand the interactions of agriculture, climate, and water resources in the Central Great Plains as a coupled natural-human system. We focus on the Smoky Hills Watershed in Kansas, where we gathered socioeconomic, hydrological, and climatic data, along with ecological data on fish species. The project involved substantial stakeholder engagement, which was complicated by post-truth attitudes about climate science and environmental regulation by some groups. We discuss the challenges of team management, stakeholder engagement, and data integration for modeling, notably the incorporation of stakeholder support for environmental policy in the context of extreme climatic events. We conclude by offering a framework for good collaborative practice to manage the complications of crossing boundaries in transdisciplinary research and outreach.



This research was funded by the National Science Foundation (NSF #1313815 Dynamics of Coupled Natural and Human Systems). Errors of interpretation and otherwise are the responsibility of the authors. The Kansas Cooperative Fish and Wildlife Research Unit is a joint effort among Kansas State University, the U.S. Geological Survey, U.S. Fish and Wildlife Service, the Kansas Department of Wildlife, Parks, and Tourism (KDWPT), and the Wildlife Management Institute.


  1. Albright, E. A. (2011). Policy Change and Learning in Response to Extreme Flood Events in Hungary: An Advocacy Coalition Approach. Policy Studies Journal, 39(3), 485–511. Scholar
  2. Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large Area Hydrologic Modeling and Assessment Part I: Model Development. Journal of the American Water Resource Association, 34, 73–89. Scholar
  3. Arnold, J. G., Youssef, M. A., Yen, H., et al. (2015). Hydrological Processes and Model Representation: Impact of Soft Data on Calibration. Transactions of the ASABE, 58, 1637–1660. Scholar
  4. Baron, J. S., Poff, N. L., Angermeier, P. L., Dahm, C. N., Gleick, P. H., Hairston, N. G., Jr., et al. (2002). Meeting Ecological and Societal Needs for Freshwater. Ecological Applications, 12, 1247–1260.CrossRefGoogle Scholar
  5. Caldas, M. M., Sanderson, M. R., Mather, M., Daniels, M. D., Bergtold, J. S., Aistrup, J. A., et al. (2015). Opinion: Endogenizing Culture in Sustainability Science Research and Policy. Proceedings of the National Academy of Science, 112(27), 8157–8159.CrossRefGoogle Scholar
  6. Campbell, S. W., Szuwalski, S., Tabor, V. M., & deNoyelles, F. (2016). Challenges to Reintroduction of a Captive Population of Topeka Shiner (Notropis topeka) into Former Habitats in Kansas. Transactions of the Kansas Academy of Science, 119(1), 83–92.CrossRefGoogle Scholar
  7. Cardinale, B. J. (2011). Biodiversity Improves Water Quality Through Niche Partitioning. Nature, 472, 86–89.CrossRefGoogle Scholar
  8. Chatterjee, S., Daniels, M., Sheshukov, A., & Gao, J. (2018). Projected Climate Change Impacts on Hydrologic Flow Regimes in the Great Plains of Kansas. River Research Applications, 34, 195–206.CrossRefGoogle Scholar
  9. Chave, J. (2013). The Problem of Pattern and Scale in Ecology: What Have We Learned in 20 Years? Ecology Letters, 16, 4–16.Google Scholar
  10. Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., & Mace, G. M. (2011). Beyond Predictions: Biodiversity Conservation in a Changing Climate. Science, 332, 53–58.CrossRefGoogle Scholar
  11. Feld, C. K., Sousa, J. P., Martins da Silva, P., & Dawson, T. P. (2010). Indicators for Biodiversity and Ecosystem Services: Towards an Improved Framework for Ecosystems Assessment. Biodiversity and Conservation, 19, 2895–2919.CrossRefGoogle Scholar
  12. Fleishman, E., Noss, R., & Noon, B. (2006). Utility and Limitations of Species Richness Metrics for Conservation Planning. Ecological Indicators, 6, 543–553.CrossRefGoogle Scholar
  13. Frank, H. J., Mather, M. E., Muth, R. M., Pautzke, S. M., Smith, J. M., & Finn, J. T. (2009). The Adopt-a-Herring Program as a Fisheries Conservation Tool. Fisheries, 34, 496–507.CrossRefGoogle Scholar
  14. Gao, J., Sheshukov, A. Y., Yen, H., & White, M. (2017a). Impacts of Alternative Climate Information on Hydrologic Processes with SWAT: A Comparison of NCDC, PRISM and NEXRAD Datasets. CATENA, 156, 353–364. Scholar
  15. Gao, J., Sheshukov, A., Yen, H., Kastens, J., & Peterson, D. (2017b). Impacts of Incorporating Dominant Crop Rotation Patterns as Primary Land Use Change on Hydrologic Model Performance. Agriculture, Ecosystems & Environment, 247, 33–42.CrossRefGoogle Scholar
  16. Gleick, P. H. (1996). Water Resources. In S. H. Schneider (Ed.), Encyclopedia of Climate and Weather (Vol. 2, pp. 817–823) New York: Oxford University Press.Google Scholar
  17. Gleick, P. H. (1998). Water in Crisis: Paths to Sustainable Water Use. Ecological Applications, 8, 571–579.CrossRefGoogle Scholar
  18. Goodin, G., Mitchell, J., Knapp, M., & Bivens, R. E. (1995). Climate and Weather Atlas of Kansas. Lawrence, USA: Kansas Geological Survey.Google Scholar
  19. Hooper, D. U., Chapin I, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., et al. (2005). Effects of Biodiversity on Ecosystem Functioning: A Consensus of Current Knowledge. Ecological Monographs, 75, 3–35.Google Scholar
  20. Laurila-Pant, M., Lehikoinen, A., Uusitalo, L., & Venesjärvi, R. (2015). How to Value Biodiversity in Environmental Management? Ecological Indicators, 55, 1–11.CrossRefGoogle Scholar
  21. Levin, S. A. (1992). The Problem of Pattern and Scale in Ecology. Ecology, 73(6), 1943–1967.Google Scholar
  22. Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., et al. (2001). Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science, 294, 804–808.CrossRefGoogle Scholar
  23. Malmqvist, B., & Rundle, S. (2002). Threats to the Running Water Ecosystems of the World. Environmental Conservation, 29, 134–153.CrossRefGoogle Scholar
  24. Mankin, K. R., Barnes, P. L., Harner, J. P., Kalita, P. K., & Boyer, J. E. (2006). Field Evaluation of Vegetative Filter Effectiveness and Runoff Quality from Unstocked Feedlots. Journal of Soil and Water Conservation, 61(4), 209–217.Google Scholar
  25. Nohrstedt, D., & Nyberg, L. (2015). Do Floods Drive Hazard Mitigation Policy? Evidence from Swedish Municipalities. Geografiska Annaler: Series A, Physical Geography, 97(1), 109–122. Scholar
  26. Peck, J. C. (1986). Groundwater Management Institutions in Kansas. Journal of Irrigation and Drainage Engineering, 112(3).
  27. Pinto, R., de Jonge, V. N., & Marques, J. C. (2014). Linking Biodiversity Indicators, Ecosystem Functioning, Provision of Services and Human Well-Being in Estuarine Systems: Application of a Conceptual Framework. Ecological Indicators, 36, 644–655.CrossRefGoogle Scholar
  28. Postel, L. (2000). Entering an Era of Water Scarcity: The Challenges Ahead. Ecological Applications, 10, 941–948.CrossRefGoogle Scholar
  29. Prato, T. (1999). Multiple Attribute Decision Analysis for Ecosystem Management. Ecological Economics, 30(2), 207–222.CrossRefGoogle Scholar
  30. Sanderson, M. R., Bergtold, J. S., Stamm, J. L. H., Caldas, M. M., & Ramsey, S. M. (2017). Bringing the ‘Social’ into Sociohydrology: Conservation Policy Support in the Central Great Plains of Kansas, USA. Water Resources Research, 53(8), 6725–6743.Google Scholar
  31. Smith, J. M., & Mather, M. E. (2012). Using Assemblage Data in Ecological Indicators: A Comparison and Evaluation of Commonly Available Statistical Tools. Ecological Indicators, 13, 253–262.CrossRefGoogle Scholar
  32. Stern, P. C. (2000). Toward a Coherent Theory of Environmentally Significant Behavior. Journal of Social Issues, 56(3), 407–424.CrossRefGoogle Scholar
  33. Stern, P. C., Dietz, T., & Guagnano, G. A. (1995). The New Ecological Paradigm Is Social-Psychological Context. Environmental Behavior, 27(6), 723–743.CrossRefGoogle Scholar
  34. Summerfelt, R. C. (1967). Fishes of the Smoky Hill River, Kansas. Transactions of the Kansas Academy of Science, 70(1), 102–139.CrossRefGoogle Scholar
  35. Tilman, D., Wedin, D., & Knops, J. (1996). Productivity and Sustainability Influenced by Biodiversity in Grassland Ecosystems. Nature, 379, 718–720.CrossRefGoogle Scholar
  36. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural Sustainability and Intensive Production Practices. Nature, 418, 671–677.CrossRefGoogle Scholar
  37. Tuppad, P., Douglas-Mankin, K. R., & McVay, K. A. (2010). Strategic Targeting of Cropland Management Using Watershed Modeling. Agricultural Engineering International: A CIGR Journal, 12(3), 12–24.Google Scholar
  38. U.S. Department of the Interior, U.S. Fish and Wildlife Service, and U.S. Department of Commerce, U.S. Census Bureau. (2016). National Survey of Fishing, Hunting, and Wildlife-Associated Recreation.Google Scholar
  39. Vörösmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global Water Resources: Vulnerability from Climate Change Acid Population Growth. Science, 289, 284–288.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Marcellus Caldas
    • 1
    Email author
  • Martha Mather
    • 2
  • Jason Bergtold
    • 3
  • Melinda Daniels
    • 4
  • Gabriel Granco
    • 5
  • Joseph A. Aistrup
    • 6
  • David Haukos
    • 2
  • Aleksey Y. Sheshukov
    • 7
  • Matthew R. Sanderson
    • 8
  • Jessica L. Heier Stamm
    • 9
  1. 1.Department of GeographyKansas State UniversityManhattanUSA
  2. 2.Division of BiologyKansas State University, U.S. Geological Survey, Kansas Cooperative Fish and Wildlife Research UnitManhattanUSA
  3. 3.Department of Agricultural EconomicsKansas State UniversityManhattanUSA
  4. 4.Stroud Water CenterAvondaleUSA
  5. 5.Department of Geography and AnthropologyCalifornia State Polytechnic UniversityPomonaUSA
  6. 6.College of Liberal ArtsAuburn UniversityAuburnUSA
  7. 7.Department of Biological and Agricultural EngineeringKansas State UniversityManhattanUSA
  8. 8.Department of Sociology, Anthropology, and Social WorkKansas State UniversityManhattanUSA
  9. 9.Department of Industrial and Manufacturing Systems EngineeringKansas State UniversityManhattanUSA

Personalised recommendations