Advertisement

Learning Feedback Based on Dispositional Learning Analytics

  • Dirk TempelaarEmail author
  • Quan Nguyen
  • Bart Rienties
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 158)

Abstract

The combination of trace data captured from technology-enhanced learning support systems, formative assessment data and learning disposition data based on self-report surveys, offers a very rich context for learning analytics applications. In previous research, we have demonstrated how such Dispositional Learning Analytics applications not only have great potential regarding predictive power, e.g. with the aim to promptly signal students at risk, but also provide both students and teacher with actionable feedback. The ability to link predictions, such as a risk for drop-out, with characterizations of learning dispositions, such as profiles of learning strategies, implies that the provision of learning feedback is not the end point, but can be extended to the design of learning interventions that address suboptimal learning dispositions. Building upon the case studies we developed in our previous research, we replicated the Dispositional Learning Analytics analyses in the most recent 17/18 cohort of students based on the learning processes of 1017 first-year students in a blended introductory quantitative course. We conclude that the outcomes of these analyses, such as boredom being an important learning emotion, planning and task management being crucial skills in the efficient use of digital learning tools, help both predict learning performance and design effective interventions.

Keywords

Blended learning Dispositional learning analytics E-tutorials Learning feedback Learning dispositions Learning strategies 

References

  1. 1.
    Azevedo, R., Harley, J., Trevors, G., Duffy, M., Feyzi-Behnagh, R., Bouchet, F., et al.: Using trace data to examine the complex roles of cognitive, metacognitive, and emotional self-regulatory processes during learning with multi-agents systems. In: Azevedo, R., Aleven, V. (eds.) International Handbook of Metacognition and Learning Technologies, pp. 427–449. Springer, Amsterdam (2013)CrossRefGoogle Scholar
  2. 2.
    Buckingham Shum, S., Deakin Crick, R.: Learning dispositions and transferable competencies: pedagogy, modelling and learning analytics. In: Buckingham Shum, S., Gasevic, D., Ferguson, R. (eds.) Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, pp. 92–101. ACM, New York, NY, USA (2012).  https://doi.org/10.1145/2330601.2330629
  3. 3.
    Chrysafiadi, K., Virvou, M.: Student modeling approaches: a literature review for the last decade. Expert Syst. Appl. 40, 4715–4729 (2013).  https://doi.org/10.1016/j.eswa.2013.02.007CrossRefGoogle Scholar
  4. 4.
    Crick, R.: Learning analytics: layers, loops and processes in a virtual learning infrastructure. In: Lang, C., Siemens, G., Wise, A., Gašević, D. (eds.) Handbook of Learning Analytics, Chap. 25, pp. 291–308. Society for Learning Analytics Research, Solar (2017)  https://doi.org/10.18608/hla17
  5. 5.
    Elliot, A., Murayama, K., Kobeisy, A., Lichtenfeld, S.: Potential-based achievement goals. Brit. J. Educ. Psychol. 85, 192–206 (2015). https://doi.org/10.1111/bjep.12051
  6. 6.
    Gašević, D., Jovanović, J., Pardo, A., Dawson, S.: Detecting learning strategies with analytics: links with self-reported measures and academic performance. J. Learn. Anal. 4(1), 113–128 (2017).  https://doi.org/10.18608/jla.2017.42.10CrossRefGoogle Scholar
  7. 7.
    Hofstede, G., Hofstede, G.J., Minkov, M.: Cultures and Organizations: Software of the Mind. Revised and Expanded, 3rd edn. McGraw-Hill, Maidenhead (2010)Google Scholar
  8. 8.
    Martin, A.J.: Examining a multidimensional model of student motivation and engagement using a construct validation approach. Br. J. Educ. Psychol. 77(2), 413–440 (2007).  https://doi.org/10.1348/000709906X118036CrossRefGoogle Scholar
  9. 9.
    Matzavela, V., Chrysafiadi, K., Alepis, E.: Questionnaires and artificial neural networks: a literature review on modern techniques in education. In: Proceedings 2017 IEEE Global Engineering Education Conference (EDUCON), 25–28 April 2017, Athens, Greece (2017).  https://doi.org/10.1109/educon.2017.7943077
  10. 10.
    Mittelmeier, J., Rienties, B., Tempelaar, D.T., Hillaire, G., Whitelock, D.: The influence of internationalised versus local content on online intercultural collaboration in groups: a randomised control trial study in a statistics course. Comput. Educ. 118(1), 82–95 (2018).  https://doi.org/10.1016/j.compedu.2017.11.003CrossRefGoogle Scholar
  11. 11.
    Nguyen, Q., Tempelaar, D.T., Rienties, B., Giesbers, B.: What learning analytics based prediction models tell us about feedback preferences of students. In: Amirault, R., Visser, Y. (eds.) e-Learners and their data, part 1: conceptual, research, and exploratory perspectives. Q. Rev. Distance Educ. 17(3) (2016)Google Scholar
  12. 12.
    Non, A., Tempelaar, D.: Time preferences, study effort, and academic performance. Econ. Educ. Rev. 54, 36–61 (2016).  https://doi.org/10.1016/j.econedurev.2016.06.003CrossRefGoogle Scholar
  13. 13.
    Ochea, X.: Multimodal learning analytics. In: Lang, C., Siemens, G., Wise, A., Gašević, D. (eds.) Handbook of Learning Analytics, Chap. 11, pp. 129–141. Solar: Society for Learning Analytics (2017).  https://doi.org/10.18608/hla17
  14. 14.
    Pekrun, R., Linnenbrink-Garcia, L.: Academic emotions and student engagement. In: Christenson, S.L., Reschly, A.L., Wylie, C. (eds.) Handbook of Research on Student Engagement, pp. 259–282. Springer US (2012).  https://doi.org/10.1007/978-1-4614-2018-7_12
  15. 15.
    Rienties, B., Alden Rivers, B.: Measuring and understanding learner emotions: evidence and prospects. In: LACE Review Papers, vol. 1. LACE, Milton Keynes (2014)Google Scholar
  16. 16.
    Rienties, B., Cross, S., Zdrahal, Z.: Implementing a learning analytics intervention and evaluation framework: what works? In: Kei Daniel, B. (ed.) Big Data and Learning Analytics: Current Theory and Practice in Higher Education, pp. 147–166. Springer International Publishing, Cham (2017).  https://doi.org/10.1007/978-3-319-06520-5_10
  17. 17.
    Rogaten, J., Rienties, B., Sharpe, R., Cross, S., Whitelock, D., Lygo-Baker, S., Littlejohn, A.: Reviewing affective, behavioural, and cognitive learning gains in higher education. In: Assessment & Evaluation in Higher Education (2018).  https://doi.org/10.1080/02602938.2018.1504277
  18. 18.
    Tempelaar, D.T.: Learning analytics and formative assessments in blended learning of mathematics and statistics. Innov. Infotechnologies Sci. Bus. Educ. 2(17), 9–13 (2014)Google Scholar
  19. 19.
    Tempelaar, D.T., Cuypers, H., Van de Vrie, E., Heck, A., Van der Kooij, H.: Formative assessment and learning analytics. In: Suthers, D., Verbert, K. (eds.) Proceedings of the 3rd International Conference on Learning Analytics and Knowledge, pp. 205–209. ACM, New York (2013).  https://doi.org/10.1145/2460296.2460337
  20. 20.
    Tempelaar, D.T., Gijselaers, W.H., Schim van der Loeff, S., Nijhuis, J.F.H.: A structural equation model analyzing the relationship of student achievement motivations and personality factors in a range of academic subject-matter areas. Contemp. Educ. Psychol. 32(1), 105–131 (2007).  https://doi.org/10.1016/j.cedpsych.2006.10.004CrossRefGoogle Scholar
  21. 21.
    Tempelaar, D.T., Niculescu, A., Rienties, B., Giesbers, B., Gijselaers, W.H.: How achievement emotions impact students’ decisions for online learning, and what precedes those emotions. Internet High. Educ. 15(2012), 161–169 (2012).  https://doi.org/10.1016/j.iheduc.2011.10.003
  22. 22.
    Tempelaar, D.T., Rienties, B., Giesbers, B.: Who profits most from blended learning? Ind. High. Educ. 23(4), 285–292 (2009).  https://doi.org/10.5367/000000009789346130CrossRefGoogle Scholar
  23. 23.
    Tempelaar, D.T., Rienties, B., Giesbers, B.: Computer assisted, formative assessment and dispositional learning analytics in learning mathematics and statistics. In: Kalz, M., Ras, E. (eds.) Computer Assisted Assessment. Research into E-Assessment, vol. 439, pp. 67–78. Springer International Publishing (2014)Google Scholar
  24. 24.
    Tempelaar, D.T., Rienties, B., Giesbers, B.: Computer assisted, formative assessment and dispositional learning analytics in learning mathematics and statistics. In: Kalz, M., Ras, E. (eds.) Computer Assisted Assessment. Research into E-Assessment, pp. 67–78. Communications in Computer and Information Science, vol. 439. Springer, Berlin (2014).  https://doi.org/10.1007/978-3-319-08657-6_7
  25. 25.
    Tempelaar, D.T., Rienties, B., Giesbers, B.: In search for the most informative data for feedback generation: learning analytics in a data-rich context. Comput. Hum. Behav. 47, 157–167 (2015) (Special Issue Learning Analytics).  https://doi.org/10.1016/j.chb.2014.05.038
  26. 26.
    Tempelaar, D.T., Rienties, B., Giesbers, B.: Understanding the role of time on task in formative assessment: the case of mathematics learning. In: Ras, E., Joosten-ten Brinke, D. (eds.) Computer Assisted Assessment—Research into E-Assessment. Communications in Computer and Information Science, vol. 571, pp. 120–133. Springer, Zug, Switzerland (2015).  https://doi.org/10.1007/978-3-319-27704-2_12
  27. 27.
    Tempelaar, D.T., Rienties, B., Giesbers, B.: Verifying the stability and sensitivity of learning analytics based prediction models: an extended case study. In: Zvacek, S., Restivo, M.T., Uhomoibhi, J., Helfert, M. (eds.) Computer Supported Education, pp. 256–273. Communications in Computer and Information Science, vol. 583. Springer, Switzerland (2016).  https://doi.org/10.1007/978-3-319-29585-5_15
  28. 28.
    Tempelaar, D.T., Rienties, B., Giesbers, B., Schim van der Loeff, S.: How cultural and learning style differences impact students’ learning preferences in blended learning. In: Jean Francois, E. (ed.) Transcultural Blended Learning and Teaching in Postsecondary Education, pp. 30–51. IGI Global, Hershey, PA (2013).  https://doi.org/10.4018/978-1-4666-2014-8.ch003
  29. 29.
    Tempelaar, D.T., Rienties, B., Giesbers, B., Schim van der Loeff, S.: Cultural differences in learning approaches. In: Van den Bossche, P., Gijselaers, W.H., Milter, R.G. (eds.) Facilitating Learning in the 21st Century: Leading through Technology, Diversity and Authenticity, pp. 1–28. Springer, Dordrecht (2013).  https://doi.org/10.1007/978-94-007-6137-7_1
  30. 30.
    Tempelaar, D.T., Rienties, B., Mittelmeier, J., Nguyen, Q.: Student profiling in a dispositional learning analytics application using formative assessment. Comput. Hum. Behav. 78, 408–420 (2018).  https://doi.org/10.1016/j.chb.2017.08.010CrossRefGoogle Scholar
  31. 31.
    Tempelaar, D.T., Rienties, B., Nguyen, Q.: Towards actionable learning analytics using dispositions. IEEE Trans. Educ. 10(1), 6–16 (2017).  https://doi.org/10.1109/TLT.2017.2662679CrossRefGoogle Scholar
  32. 32.
    Tempelaar, D.T., Rienties, B., Nguyen, Q.: Adding dispositions to create pedagogy-based learning analytics. Zeitschrift für Hochschulentwicklung, ZFHE 12(1), 15–35 (2017)Google Scholar
  33. 33.
    Tempelaar, D., Rienties, B., Nguyen, Q.: Investigating learning strategies in a dispositional learning analytics context: the case of worked examples. In: Proceedings of the International Conference on Learning Analytics and Knowledge, Sydney, Australia, March 2018 (LAK’18), pp. 201–205 (2018).  https://doi.org/10.1145/3170358.3170385
  34. 34.
    Tempelaar, D., Rienties, B., Nguyen, Q.: A multi-modal study into students’ timing and learning regulation: time is ticking. In: Interactive Technology and Smart Education (2018) (in press)Google Scholar
  35. 35.
    Tempelaar, D.T., Verhoeven, P.: Adaptive and maladaptive emotions, behaviours and cognitions in the transition to university: the experience of international full degree students. In: Jindal-Snape, D., Rienties, B. (eds.) Multi-Dimensional Transitions of International Students to Higher Education, Chapter 12, pp. 334–358. Routledge, New York (2016)Google Scholar
  36. 36.
    Vermunt, J.D.: Metacognitive, cognitive and affective aspects of learning styles and strategies: a phenomenographic analysis. High. Educ. 31(25–50) (1996).  https://doi.org/10.1007/bf00129106
  37. 37.
    Williams, A., Sun, Z., Xie, K., Garcia, E., Ashby, I., Exter, M., Largent, D., Lu, P., Szafron, D., Ahmed, S., Onuczko, T., Smith, J., Tempelaar, D.T., Bitting, K.S., Olcott Marshall, A., Christensen, E., Tseng, H., Walsh, J.: Flipping STEM. In: Santos Green, L., Banas, J., Perkins, R. (eds.) The Flipped College Classroom, Conceptualized and Re-Conceptualized, Part II, pp. 149–186. Springer International Publishing, Switzerland (2017).  https://doi.org/10.1007/978-3-319-41855-1_8

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Business and EconomicsMaastricht UniversityMaastrichtNetherlands
  2. 2.Institute of Educational TechnologyThe Open UniversityMilton Keynes,UK

Personalised recommendations