Advertisement

Tetrapod Teeth: Diversity, Evolution, and Function

  • Peter S. UngarEmail author
  • Hans-Dieter Sues
Chapter
Part of the Fascinating Life Sciences book series (FLS)

Abstract

Teeth provide an excellent model system for understanding evolutionary change and how it has led to adaptive diversity across tetrapods. Their durability over geological timescales and their ubiquity in the fossil record make teeth unique and allow direct comparison of dental structure for both extant and extinct species. We can detail diversity of size, shape, and structure, past and present, and in doing so explore what nature can accomplish with a little embryonic tissue and some signaling proteins—common and novel solutions to the problems of food acquisition and processing. Teeth are especially important for understanding the process of evolution because of their central role in ecology; eater to eaten is the most fundamental relationship between living organisms. Teeth mediate this relationship, and so are the front line in nature’s “struggle for existence.” This chapter presents a survey of dental form and function in both stem- and crown-tetrapods. Each of the major groups—Amphibia, Reptilia, and Mammalia and their stem-groups—is considered separately. We begin with a general discussion of how teeth work, focusing on their roles in food acquisition and processing. We then review distinctive dental forms for extinct and extant taxa, group by group, to give the reader a sense of the extraordinary range of adaptive solutions among the tetrapods to the challenges associated with food acquisition and processing. Our survey culminates with an overview of the origin, evolution, and adaptive radiation of the mammalian masticatory system.

Notes

Acknowledgements

We thank Vincent Bels for his kind invitation for us to contribute to this volume and Alejandro Rico-Guevara for his careful and thoughtful review.

References

  1. Abler WL (1992) The serrated teeth of tyrannosaurid dinosaurs, and biting structures in other animals. Paleobiology 18(2):161–183Google Scholar
  2. Abramyan J, Richman JM (2015) Recent insights into the morphological diversity in the amniote primary and secondary palates. Dev Dynam 244(12):1457–1468.  https://doi.org/10.1002/dvdy.24338PubMedPubMedCentralGoogle Scholar
  3. Adam PJ (2005) Lobodon carcinophaga. Mamm Species 772:1–14Google Scholar
  4. Aimi M, Inagaki H (1988) Grooved lower incisors in flying lemurs. J Mamm 69(1):138–140Google Scholar
  5. Allin EF (1975) Evolution of the mammalian middle ear. J Morph 147(4):403–438PubMedGoogle Scholar
  6. Anderson PK (2002) Habitat, niche, and evolution of sirenian mating systems. J Mamm Evol 9(1):55–98.  https://doi.org/10.1023/A:1021383827946CrossRefGoogle Scholar
  7. Anthwal N, Joshi L, Tucker AS (2013) Evolution of the mammalian middle ear and jaw: adaptations and novel structures. J Anat 222(1):147–160.  https://doi.org/10.1111/j.1469-7580.2012.01526.xCrossRefPubMedGoogle Scholar
  8. Archer D, Sanson G (2002) Form and function of the selenodont molar in southern African ruminants in relation to their feeding habits. J Zool (Lond) 257(1):13–26.  https://doi.org/10.1017/S0952836902000614CrossRefGoogle Scholar
  9. Archer M (1984) The Australian marsupial radiation. In: Archer M, Clayton G (eds) Vertebrate zoogeography and evolution in Australia. Hesperian Press, Carlisle, pp 633–708Google Scholar
  10. Archer M, Flannery TF, Ritchie A, Molnar RE (1985) First mesozoic mammal from Australia: an Early Cretaceous monotreme. Nature 318(6044):363–366Google Scholar
  11. Archer M, Hand SJ, Godthelp H (1991) Australia’s lost world: prehistoric animals of Riversleigh. Indiana University Press, Bloomington, INGoogle Scholar
  12. Argot C (2004) Evolution of South American mammalian predators (Borhyaenoidea): anatomical and palaeobiological implications. Zool J Linn Soc 140(4):487–521.  https://doi.org/10.1111/j.1096-3642.2004.00110.xCrossRefGoogle Scholar
  13. Asher RJ, Sánchez-Villagra MR (2005) Locking yourself out: diversity among dentally zalambdodont therian mammals. J Mamm Evol 12(1–2):265–282.  https://doi.org/10.1007/s10914-005-5725-3CrossRefGoogle Scholar
  14. Barghusen HR (1968) The lower jaw of cynodonts (Reptilia, Therapsida) and the evolutionary origin of mammal-like adductor jaw musculature. Postilla 116:1–49Google Scholar
  15. Barghusen HR (1973) The adductor jaw musculature of Dimetrodon (Reptilia, Pelycosauria). J Paleontol 47(5):823–834Google Scholar
  16. Barlow JC (1984) Xenarthrans and pholidotes. In: Anderson S, Jones JK (eds) Orders and families of recent mammals of the world. John Wiley and Sons, New York, pp 219–239Google Scholar
  17. Barrett PM (2000) Prosauropod dinosaurs and iguanas: speculations on the diets of extinct reptiles. In: Sues H-D (ed) Evolution of herbivory in terrestrial vertebrates. Cambridge University Press, Cambridge, UK, pp 42–78Google Scholar
  18. Benton MJ (1984) Tooth form, growth, and function in Triassic rhynchosaurs (Reptilia, Diapsida). Palaeontology 27(4):737–776Google Scholar
  19. Berkovitz BK (2000) Tooth replacement patterns in non-mammalian vertebrates. In: Teaford MF, Smith MM, Ferguson MWJ (eds) Development, function and evolution of teeth. Cambridge University Press, Cambridge, UK, pp 186–200Google Scholar
  20. Berkovitz BK, Shellis P (2017) The teeth of non-mammalian vertebrates. Academic Press, LondonGoogle Scholar
  21. Bock WJ, Wahlert Gv (1965) Adaptation and the form-function complex. Evolution 19(3):269–299Google Scholar
  22. Bogert CM (1943) Dentitional phenomena in cobras and other elapids with notes on adaptive modification of fangs. Bull Amer Mus Nat Hist 81(3):285–360Google Scholar
  23. Broili F, Schröder J (1934) Zur Osteologie des Kopfes von Cynognathus. Sitzungsber Bayer Akad Wiss Math -Nat Abt 1934:95–128Google Scholar
  24. Bryden MM (1972) Growth and development of marine mammals. In: Harrison RJ (ed) Functional anatomy of marine mammals, vol 1. Academic Press, New York, pp 1–79Google Scholar
  25. Buchtová M, Stembírek J, Glocová K, Matalová E, Tucker AS (2012) Early regression of the dental lamina underlies the development of diphyodont dentitions. J Dent Res 91(5):491–498. https://doi.org/10.1177/0022034512442896PubMedGoogle Scholar
  26. Buffetaut E, Dauphin Y, Jaeger J-J, Martin M, Mazin JM, Tong H (1986) Prismatic dental enamel in theropod dinosaurs. Naturwissenschaften 73(6):326–327.  https://doi.org/10.1007/Bf00451481CrossRefPubMedGoogle Scholar
  27. Busbey AB (1995) The structural consequences of skull flattening in crocodilians. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge, UK, pp 173–192Google Scholar
  28. Butler PM (1941) A theory of the evolution of mammalian molar teeth. Am J Sci 239(6):421–450Google Scholar
  29. Butler PM (1946) The evolution of carnassial dentitions in the Mammalia. Proc Zool Soc Lond 116(2):198–220Google Scholar
  30. Butler PM (1972) Some functional aspects of molar evolution. Evolution 26(3):474–483PubMedGoogle Scholar
  31. Butler PM (1978) Molar cusp nomenclature and homology. In: Butler PM, Joysey KA (eds) Development, function and evolution of teeth. Academic Press, New York, pp 439–453Google Scholar
  32. Butler PM (1983) Evolution and mammalian dental morphology. J Biol Buccale 11(4):285–302PubMedGoogle Scholar
  33. Butler PM (1980) The tupaiid dentition. In: Luckett WP (ed) Comparative biology and evolutionary relationships of tree shrews. Plenum Press, New York, pp 171–204Google Scholar
  34. Bystrov AP, Efremov IA (1940) Benthosuchus sushkini Efr.—a labyrinthodont from the Eotriassic of Sharjenga River. Trudy Paleont Inst. Akad Nauk SSSR 10(1):1–152Google Scholar
  35. Carroll RL (1988) Vertebrate paleontology and evolution. W.H. Freeman, New YorkGoogle Scholar
  36. Carroll RL, Bossy KA, Milner AC, Andrews SM, Wellstead CF (1998) Lepospondyli: Microsauria, Nectridea, Lysorophia, Adelospondyli, Aistopoda, Acherontiscidae. In: Wellnhofer P (ed) Handbuch der Paläoherpetologie part 1. Verlag Dr, Friedrich Pfeil, Munich, pp 1–216Google Scholar
  37. Clark JM, Jacobs LL, Downs WR (1989) Mammal-like dentition in a Mesozoic crocodylian. Science 244(4908):1064–1066.  https://doi.org/10.1126/science.244.4908.1064CrossRefPubMedGoogle Scholar
  38. Chow M, Wang B (1979) Relationships between pantodonts and tillodonts and classification of the order Pantodonta. Vert PalAs 17(1):37–48Google Scholar
  39. Clementz MT, Hoppe KA, Koch PL (2003) A paleoecological paradox: the habitat and dietary preferences of the extinct tethythere Desmostylus, inferred from stable isotope analysis. Paleobiology 29(4):506–519.  https://doi.org/10.1666/0094-8373(2003)029%3c0506:apptha%3e2.0.co;2Google Scholar
  40. Cooper JS, Poole DFG (1973) The dentition and dental tissues of the agamid lizard. Uromastyx. J Zool (Lond) 169(1):85–100Google Scholar
  41. Cooper JS, Poole DFG, Lawson R (1970) The dentition of agamid lizards with special reference to tooth replacement. J Zool (Lond) 162(1):85–98Google Scholar
  42. Cope ED (1883) On the trituberculate type of molar tooth in the Mammalia. Proc Amer Phil Soc 21(114):324–326Google Scholar
  43. Court N (1992) A unique form of dental bilophodonty and a functional interpretation of peculiarities in the masticatory system of Arsinoitherium (Mammalia, Embrithopoda). Hist Biol 6(2):91–111.  https://doi.org/10.1080/10292389209380421CrossRefGoogle Scholar
  44. Crompton AW (1963) On the lower jaw of Diarthrognathus and the evolution of the mammalian lower jaw. Proc Zool Soc Lond 140(4):697–753Google Scholar
  45. Crompton AW (1971) The origin of the tribosphenic molar. Zool J Linn Soc 50(Suppl 1):65–87Google Scholar
  46. Crompton AW (1972) Postcanine occlusion in cynodonts and tritylodontids. Bull Brit Mus (Nat Hist) Geol 21:27–71Google Scholar
  47. Crompton AW (1995) Masticatory function in nonmammalian cynodonts and early mammals. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge, UK, pp 55–75Google Scholar
  48. Crompton AW, Hiiemae K (1969) Functional occlusion in tribosphenic molars. Nature 222(5194):678–679PubMedGoogle Scholar
  49. Crompton AW, Hiiemae K (1970) Molar occlusion and mandibluar movements during occlusion in the American opossum, Didelphis marsupialis. Zool J Linn Soc 49(1):21–47Google Scholar
  50. Crompton AW, Hylander WL (1986) Changes in mandibular function following the acquisition of a dentary-squamosal joint. In: Hotton NIII, MacLean PD, Roth JJ, Roth EC (eds) The ecology and biology of mammal-like reptiles. Smithsonian Institution Press, Washington, DC, pp 263–282Google Scholar
  51. Crompton AW, Jenkins FA Jr (1968) Molar occlusion in late Triassic mammals. Biol Rev 43(4):427–458PubMedGoogle Scholar
  52. Crompton AW, Luo Z-X (1993) Relationships of the Liassic mammals Sinoconodon, Morganucodon oehleri, and Dinnetherium. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny: Mesozoic differentiation, multituberculates, monotremes, early therians and marsupials. Springer-Verlag, New York, pp 30–44Google Scholar
  53. Crompton AW, Wood CB, Stern DN (1994) Differential wear of enamel: a mechanism for maintaining sharp cutting edges. In: Bels VL, Chardon M, Vandewalle P (eds) Advances in comparative and environmental physiology, vol 18. Biomechanics of feeding in vertebrates. Springer-Verlag, New York, pp 321–346Google Scholar
  54. Cuvier G (1815) Essay on the theory of the earth, 2nd edn. R. Jameson trans. William Blackwood, John Murray and Robert Baldwin, LondonGoogle Scholar
  55. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  56. Davis BM (2012) Micro-computed tomography reveals a diversity of peramuran mammals from the Purbeck Group (Berriasian) of England. Palaeontology 55(4):789–817.  https://doi.org/10.1111/j.1475-4983.2012.01161.xCrossRefGoogle Scholar
  57. Davit-Béal T, Chisaka H, Delgado S, Sire J-Y (2007) Amphibian teeth: current knowledge, unanswered questions, and some directions for future research. Biol Rev 82(1):49–81.  https://doi.org/10.1111/j.1496-185X.2006.00003.xCrossRefPubMedGoogle Scholar
  58. de Muizon C, Lange-Badré B (1997) Carnivorous dental adaptations in tribosphenic mammals and phylogenetic reconstruction. Lethaia 30(4):353–366.  https://doi.org/10.1111/j.1502-3931.1997.tb00481.xCrossRefGoogle Scholar
  59. de Queiroz K (1987) Phylogenetic systematics of iguanine lizards: a comparative osteological study. Univ Cal Publ Zoology 118:1–203Google Scholar
  60. Domning DP (2001) Evolution of the Sirenia and Desmostylia. In: Mazin J-M, de Buffrénil V (eds) Secondary adaptation of tetrapods to life in water. In: Proceedings of the international meeting, Poitiers 1996. Verlag Dr. Friedrich Pfeil, Munich, pp 151–168Google Scholar
  61. Druzinsky RE (1995) Incisal biting in the mountain beaver (Aplodontia rufa) and woodchuck (Marmota monax). J Morphol 226(1):79–101.  https://doi.org/10.1002/jmor.1052260106CrossRefPubMedGoogle Scholar
  62. Dumont ER, Strait SG, Friscia AR (2000) Abderitid marsupials from the Miocene of Patagonia: an assessment of form, function, and evolution. J Paleontol 74(6):1161–1172.  https://doi.org/10.1017/S0022336000017686CrossRefGoogle Scholar
  63. Edmund AG (1969) Dentition. In: Gans C, Bellairs Ad’A, Parsons TS (eds) Biology of the Reptilia, volume 1: morphology A. Academic Press, London and New York, pp 117–200Google Scholar
  64. Ellermann JR (1966) The families and genera of living rodents. Trustees of the British Museum, LondonGoogle Scholar
  65. Erickson GM, Sidebottom MA, Kay DI, Turner KT, Ip N, Norell MA, Sawyer WG, Krick BA (2015) Wear biomechanics in the slicing dentition of the giant horned dinosaur Triceratops. Sci Adv 1:e150005.  https://doi.org/10.1126/sciadv.1500055CrossRefGoogle Scholar
  66. Estes R, Williams EE (1984) Ontogenetic variation in the molariform teeth of lizards. J Vert Paleont 4(1):96–107Google Scholar
  67. Evans AR (2005) Connecting morphology, function and tooth wear in microchiropterans. Biol J Linn Soc 85(1):81–96.  https://doi.org/10.1111/j.1095-8312.2005.00474.xCrossRefGoogle Scholar
  68. Evans AR, Sanson GD (2006) Spatial and functional modeling of carnivore and insectivore molariform teeth. J Morphol 267(6):649–662.  https://doi.org/10.1002/jmor.10285CrossRefPubMedGoogle Scholar
  69. Fay FH (1985) Odobenus rosmarus. Mamm Species 238:1–7Google Scholar
  70. Flynn JJ, Parrish JM, Rakotosamimanana B, Simpson WF, Wyss AR (1999) A Middle Jurassic mammal from Madagascar. Nature 401(6748):57–60Google Scholar
  71. Flynn JJ, Wesley-Hunt GD (2005) Carnivora. In: Rose KD, Archibald JD (eds) The rise of placental mammals: origins and relationships of the major extant clades. The Johns Hopkins University Press, Baltimore, MD, pp 175–198Google Scholar
  72. Folinsbee KE, Müller J, Reisz RR (2007) Canine grooves: morphology, function, and relevance to venom. J Vert Paleont 27(2):547–551Google Scholar
  73. Franzen JL, Wilde V (2003) First gut content of a fossil primate. J Human Evol 44:373–378Google Scholar
  74. Gaudin TJ (2004) Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. Zool J Linn Soc Lond 140(2):255–305.  https://doi.org/10.1111/j.1096-3642.2003.00100.xCrossRefGoogle Scholar
  75. Gee H (1992) By their teeth ye shall know them. Nature 360(6404):529–529Google Scholar
  76. Gheerbrant E, Domning DP, Tassy P (2005) Paenungulata (Sirenia, Proboscidea, Hyracoidea, and relatives). In: Rose KD, Archibald JD (eds) The rise of placental mammals: origins and relationships of the major extant clades. The Johns Hopkins University Press, Baltimore, MD, pp 84–105Google Scholar
  77. Giebel CG (1855) Odontographie. Vergleichende Darstellung des Zahnsystemes der lebenden und fossilen Wirbelthiere. Verlag von Ambrosius Abel, LeipzigGoogle Scholar
  78. Gill PG, Purnell MA, Crumpton N, Brown KR, Gostling NJ, Stampanoni M, Rayfield EJ (2014) Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature 512(7514):303–305.  https://doi.org/10.1038/nature13622CrossRefPubMedGoogle Scholar
  79. Gow CE (1978) The advent of herbivory in certain reptilian lineages during the Triassic. Palaeont Afr 21:133–141Google Scholar
  80. Gow CE (1980) The dentitions of the Tritheledontidae (Therapsida, Cynodontia). Proc R Soc Lond B 208(1173):461–481PubMedGoogle Scholar
  81. Gow CE (1985) Apomorphies of the Mammalia. S Afr J Sci 81(9):558–560Google Scholar
  82. Gregory AL, Sears BR, Wooten JA, Camp CD, Falk A, O’Quin K, Pauley TK (2016) Evolution of dentition in salamanders: relative roles of phylogeny and diet. Biol J Linn Soc 119(4):960–973.  https://doi.org/10.1111/bij.12831CrossRefGoogle Scholar
  83. Grine FE, Vrba ES (1980) Prismatic enamel: a pre-adaptation for mammalian diphyodonty? S Afr J Sci 76(3):139–141Google Scholar
  84. Grine FE, Vrba ES, Cruickshank ARI (1979) Enamel prisms and diphyodonty: linked apomorphies of Mammalia. S Afr J Sci 75(3):114–120Google Scholar
  85. Gurovich Y, Beck R (2009) The phylogenetic affinities of the enigmatic mammalian clade Gondwanatheria. J Mamm Evol 16(1):25–49.  https://doi.org/10.1007/s10914-008-9097-3CrossRefGoogle Scholar
  86. Habersetzer J, Richter G, Storch G (1994) Paleoecology of early Middle Eocene bats from Messel, FRG. Aspects of flight, feeding and echolocation. Hist Biol 8(1–4):235–260Google Scholar
  87. Hendrickx C, Mateus O (2014) Abelisauridae (Dinosauria: Theropoda) from the Late Jurassic of Portugal and dentition-based phylogeny as a contribution for the identification of isolated theropod teeth. Zootaxa 3759(1):1–74.  https://doi.org/10.11646/zootaxa.3759.1.1CrossRefPubMedGoogle Scholar
  88. Hershkovitz P (1971) Basic crown patterns and cusp homologies of mammalian teeth. In: Dahlberg AA (ed) Dental morphology and evolution. The University of Chicago Press, Chicago, pp 95–150Google Scholar
  89. Hiiemae KM (1967) Masticatory function in mammals. J Dental Res 46(5):883–893Google Scholar
  90. Hillson S (2005) Teeth. 2nd edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  91. Holden C (2005) What’s in a tooth? Science 310(5756):1900Google Scholar
  92. Hongo A, Akimoto M (2003) The role of incisors in selective grazing by cattle and horses. J Agricult Sci 140(4):469–477.  https://doi.org/10.1017/S0021859603003083CrossRefGoogle Scholar
  93. Hopson JA (1971) Postcanine replacement in the gomphodont cynodont Diademodon. Zool J Linn Soc 50(Suppl):1–21Google Scholar
  94. Hume ID, Jarman PJ, Renfree MB, Temple-Smith PD (1989) Macropodidae. In: Walton DW, Richardson BJ (eds) Fauna of Australia, vol 1B. Mammalia. Australian Government Publishing Service, Canberra, ACT, pp 679–715Google Scholar
  95. Hunter JP, Jernvall J (1995) The hypocone as a key innovation in mammalian evolution. Proc Natl Acad Sci USA 92(23):10718–10722PubMedGoogle Scholar
  96. Husar SL (1978) Trichechus manatus. Mammalian Species 93:1–5Google Scholar
  97. Jablonski D (2005) Mass extinctions and macroevolution. Paleobiology 31(2):192–210.  https://doi.org/10.1666/0094-8373(2005)031%5b0192:meam%5d2.0.co;2Google Scholar
  98. Janis CM (1990) Correlation of cranial and dental variables with dietary preferences in mammals: a comparison of macropodids and ungulates. Mem Queensland Mus 28(1):349–366Google Scholar
  99. Janis CM, Archibald JD, Cifelli RL, Lucas SG, Schaff CR, Schoch RM, Williamson TE (1998) Archaic ungulates and ungulatelike mammals. In: Janis CM, Scott KM, Jacobs LL (eds) Evolution of Tertiary mammals of North America. Terrestrial carnivores, ungulates, and ungulate-like mammals. Cambridge University Press, Cambridge, UK, pp 247–259Google Scholar
  100. Jenkins PD, Kilpatrick CW, Robinson MF, Timmins RJ (2004) Morphological and molecular investigations of a new family, genus and species of rodent (Mammalia: Rodentia: Hystricognatha) from Lao PDR. Syst Biodivers 2:419–454.  https://doi.org/10.1017/S1477200004001549CrossRefGoogle Scholar
  101. Jones C (1984) Tubulidentates, proboscideans and hyracoids. In: Anderson S, Jones JK (eds) Orders and families of recent mammals of the world. Wiley, New York, pp 523–535Google Scholar
  102. Kearney M, Rieppel O (2006) An investigation into the occurrence of plicidentine in the teeth of squamate reptiles. Copeia 2006(3):337–350.  https://doi.org/10.1643/0045-8511(2006)2006%5b337:aiitoo%5d2.0.co;2Google Scholar
  103. Kemp TS (2005) The origin and evolution of mammals. Oxford University Press, OxfordGoogle Scholar
  104. Kielan-Jaworowska Z (1974) Multituberculate succession in the Late Cretaceous of the Gobi Desert (Mongolia). Palaeont Pol 30:23–44Google Scholar
  105. Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the age of dinosaurs: origins, evolution and structure. Columbia University Press, New YorkGoogle Scholar
  106. Kielan-Jaworowska Z, Crompton AW, Jenkins FA Jr (1987) The origin of egg-laying mammals. Nature 326(6116):871–873Google Scholar
  107. King GM (1988) Anomodontia. In: Wellnhofer P (ed) Handbuch der Paläoherpetologie part 17C. Gustav Fischer Verlag, StuttgartGoogle Scholar
  108. King GM, Oelofsen BW, Rubidge RS (1989) The evolution of the dicynodont feeding system. Zool J Linn Soc 113(2):165–223Google Scholar
  109. Koford CB (1957) The Vicuña and the Puna. Ecol Monogr 27(2):153–219.  https://doi.org/10.2307/1948574CrossRefGoogle Scholar
  110. Krause DW (1982) Jaw movement, dental function, and diet in the Paleocene multituberculate Ptilodus. Paleobiology 8:265–281Google Scholar
  111. Krause DW (2014) Dental morphology of Vintana sertichi (Mammalia, Gondwanatheria) from the Late Cretaceous of Madagascar. J Vert Paleontol 14(S1):137–165.  https://doi.org/10.1080/02724634.2014.976129CrossRefGoogle Scholar
  112. LeBlanc ARH, Reisz RR (2013) Periodontal ligaments, cementum, and alveolar bone in the oldest herbivorous tetrapods, and their evolutionary significance. PLoS One 8(9):e74697.  https://doi.org/10.1371/journal.pone.0074697CrossRefPubMedPubMedCentralGoogle Scholar
  113. LeBlanc ARH, Reisz RR (2015) Patterns of tooth development and replacement in captorhinid reptiles: a comparative approach for understanding the origin of multiple tooth rows. J Vert Paleontol 35(3):e919928.  https://doi.org/10.1080/02724634.2014.919928CrossRefGoogle Scholar
  114. LeBlanc ARH, Reisz RR, Evans DC, Bailleul AM (2016) Ontogeny reveals function and evolution of the hadrosaurid dinosaur dental battery. BMC Evol Biol 16:152.  https://doi.org/10.1186/s12862-016-0721-1CrossRefPubMedPubMedCentralGoogle Scholar
  115. Lessertisseur J, Sigogneau D (1965) Sur l’acquisition des principales caracteristiques du squelette des mammifères. Mammalia 29(1):95–168Google Scholar
  116. Li JT, Johnson CA, Smith AA, Hunter DJ, Singh G, Brunski JB, Helms JA (2016) Linking suckling biomechanics to the development of the palate. Sci Rep 6:20419. ARTN 20419.  https://doi.org/10.1038/srep20419
  117. Lillegraven JA (1974) Biogeographical considerations of the marsupial-placental dichotomy. Annu Rev Ecol Syst 5:263–283Google Scholar
  118. Long J, Archer M, Flannery T, Hand S (2002) Prehistoric mammals of Australia and New Guinea: one hundred million years of evolution. The Johns Hopkins University Press, Baltimore, MDGoogle Scholar
  119. Lopatin AV, Averianov AO (2006) An aegialodontid upper molar and the evolution of mammal dentition. Science 313(5790):1092.  https://doi.org/10.1126/science.1128530CrossRefPubMedGoogle Scholar
  120. Louchart A, Viriot L (2011) From snout to beak: the loss of teeth in birds. Trends Ecol Evol 26(12):664–673.  https://doi.org/10.1016/j.tree.2011.09.004CrossRefGoogle Scholar
  121. Lucas PW (2004) Dental functional morphology: how teeth work. Cambridge University Press, Cambridge, UKGoogle Scholar
  122. Luckett WP, Wooley PA (1996) Ontogeny and homology of the dentition in dasyurid marsupials: development in Sminthopsis virginiae. J Mamm Evol 3(4):327–364.  https://doi.org/10.1007/BF02077449CrossRefGoogle Scholar
  123. Luo Z-X, Ji Q, Wible JR, Yuan C-X (2003) An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302(5652):1934–1940.  https://doi.org/10.1126/science.1090718CrossRefPubMedGoogle Scholar
  124. Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2004) Evolution of dental replacement in mammals. Bull Carnegie Mus Nat Hist 36(1):159–175Google Scholar
  125. Luo Z-X (2011) Developmental patterns in Mesozoic evolution of mammal ears. Annu Rev Ecol Evol Syst 42:355–380.  https://doi.org/10.1146/annurev-ecolsys-032511-142302CrossRefGoogle Scholar
  126. Luo Z-X, Gatesy SM, Jenkins FA Jr, Amaral WW, Shubin NH (2015) Mandibular and dental characteristics of Late Triassic mammaliaform Haramiyavia and their ramifications for basal mammal evolution. Proc Natl Acad Sci USA 112(51):E7101–E7109.  https://doi.org/10.1073/pnas.1519387112
  127. Luo Z-X, Ji Q, Yuan C-X (2007) Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals. Nature 450(7166):93–97.  https://doi.org/10.1038/nature06221CrossRefPubMedGoogle Scholar
  128. Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol Pol 47(1):1–78Google Scholar
  129. Luo Z-X, Yuan C-X, Meng Q-J, Ji Q (2011) A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476(7361):442–445.  https://doi.org/10.1038/nature10291CrossRefPubMedGoogle Scholar
  130. Maas MC, Dumont ER (1999) Built to last: the structure, function, and evolution of primate dental enamel. Evol Anthropol 8(4):133–152.  https://doi.org/10.1002/(sici)1520-6505(1999)8:4%3c133::aid-evan4%3e3.0.co;2-fGoogle Scholar
  131. Macdonald DW, Kays RW (2005) Carnivores of the world: an introduction. In: Nowak RM (ed) Walker’s carnivores of the world. The Johns Hopkins Unversity Press, Baltimore, MD, pp 1–67Google Scholar
  132. Maier W (1999) On the evolutionary biology of early mammals—with methodological remarks on the interaction between ontogenetic adaptation and phylogenetic transformation. Zool Anz 238(1):55–74Google Scholar
  133. Martin T, Rauhut OWM (2005) Mandible and dentition of Asfaltomylos patagonicus (Australosphenida, Mammalia) and the evolution of tribosphenic teeth. J Vert Paleontol 25 (2):414–425.  https://doi.org/10.1671/0272-4634(2005)025%5b0414:madoap%5d2.0.co;2Google Scholar
  134. McNab BK (1978) The evolution of endothermy in the phylogeny of mammals. Am Nat 112(1):1–21Google Scholar
  135. McNab BK (2002) The physiological ecology of vertebrates: a view from energetics. Comstock Publishing Associates, Ithaca, NYGoogle Scholar
  136. Meng J, Wyss AR (2001) The morphology of Tribosphenomys (Rodentiaformes, Mammalia): phylogenetic implications for basal Glires. J Mamm Evol 8(1):1–71.  https://doi.org/10.1023/a:1011328616715Google Scholar
  137. Meng Q-J, Ji Q, Zhang Y-G, Liu D, Grossnickle DM, Luo Z-X (2015) An arboreal docodont from the Jurassic and mammaliaform ecological diversification. Science 347(6223):764–768.  https://doi.org/10.1126/science.1260879CrossRefPubMedGoogle Scholar
  138. Meredith RW, Zhang G, Gilbert TP, Jarvis ED, Springer MS (2014) Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 346(6215).  https://doi.org/10.1126/science.1254390PubMedGoogle Scholar
  139. Míšek I, Witter K, Peterka M, Šterba O, Klima M, Tichý F, Peterková R (1996) Initial period of tooth development in dolphins (Stenella attenuata, Cetacea)—a pilot study. Acta Veter Brno 65:277–284Google Scholar
  140. Mitchell J, Heckert AB, Sues H-D (2010) Grooves to tubes: evolution of the venom delivery system in a Triassic reptile. Naturwissenschaften 97(12):1117–1121.  https://doi.org/10.1007/s00114-010-0729-0PubMedGoogle Scholar
  141. Mook CC (1921) Skull characters of recent Crocodilia, with notes on the affinities of the recent genera. Bull Am Mus Nat Hist 44:123–286Google Scholar
  142. Nydam RL, Cifelli RL (2005) New data on the dentition of the scincomorphan lizard Polyglyphanodon sternbergi. Acta Palaeont Pol 50(1):73–78Google Scholar
  143. Nydam RL, Gauthier JA, Chiment JJ (2000) The mammal-like teeth of the Late Cretaceous lizard Peneteius aquilonius Estes 1969 (Squamata, Teiidae). J Vert Paleontol 20(3):628–631.  https://doi.org/10.1671/0272-4634(2000)020%5b0628:tmltot%5d2.0.co;2Google Scholar
  144. O’Meara RN, Asher RJ (2016) The evolution of growth patterns in mammalian versus nonmammalian cynodonts. Paleobiology 42(3):439–464.  https://doi.org/10.1017/pab.2015.51CrossRefGoogle Scholar
  145. Ogle W (1912) The works of Aristotle translated into English. Clarendon Press, OxfordGoogle Scholar
  146. Osborn HF (1888a) The evolution of the mammalian molar to and from the tritubercular type. Am Nat 22(264):1067–1079Google Scholar
  147. Osborn HF (1888b) The nomenclature of the mammalian molar cusps. Am Nat 22(262):926–928Google Scholar
  148. Osborn HF (1907) Evolution of mammalian molar teeth to and from the triangular type. The MacMillan Company, New YorkGoogle Scholar
  149. Osborn JW (1971) The ontogeny of tooth succession in Lacerta vivipara Jacquin (1787). Proc R Soc Lond B 179(1056):261–289PubMedGoogle Scholar
  150. Ösi A (2014) The evolution of jaw mechanism and dental function in heterodont crocodyliforms. Hist Biol 26(3):279–414.  https://doi.org/10.1080/08912963.2013.777533CrossRefGoogle Scholar
  151. Owen R (1840–45) Odontography; or a treatise on the comparative anatomy of the teeth; their physiological relations, mode of development, and microscopic structure in the vertebrate animals. Hippolyte Bailliere, LondonGoogle Scholar
  152. Parsons TS, Williams EE (1962) The teeth of Amphibia and their relation to amphibian phylogeny. J Morphol 110(3):375–389Google Scholar
  153. Pascual R, Archer M, Jaureguizar EO, Prado JL, Godthelp H, Hand SJ (1999) First discovery of monotremes in South America. Nature 356(6371):704–706. https://doi.org/10.1038/356704a0Google Scholar
  154. Phillips MJ, Bennett TH, Lee MSY (2009) Molecules, morphology, and ecology indicate a recent, amphibious ancestry for echidnas. Proc Natl Acad Sci USA 106(40):17089–17094.  https://doi.org/10.1073/pnas.0904649106CrossRefPubMedGoogle Scholar
  155. Pledge NS (1986) A new species of Ektopodon (Marsupialia: Phalangeroidea) from the miocene of South Australia. Univ Calif Publ Geol Sci 131:43–67Google Scholar
  156. Pol D, Nascimento PM, Carvalho AB, Riccomini C, Pires-Domingues RA, Zaher H (2014) A new notosuchian from the Late Cretaceous of Brazil and the phylogeny of advanced notosuchians. PLoS One 9(4):e93105.  https://doi.org/10.1371/journal.pone.0093105CrossRefPubMedPubMedCentralGoogle Scholar
  157. Pond CM (1977) The significance of lactation in the evolution of mammals. Evolution 31(1):177–199PubMedGoogle Scholar
  158. Pregill GK, Gauthier JA, Greene HW (1986) The evolution of helodermatid squamates, with descriptions of new taxa and an overview of Varanoidea. Trans San Diego Nat Hist Soc 21(11):167–202Google Scholar
  159. Preuschoft H, Reif W-E, Loitsch C, Tepe E (1991) The function of labyrinthodont teeth: big teeth in small jaws. In: Schmidt-Kittler N, Vogel K (eds) Constructional morphology and evolution. Springer, Berlin, pp 151–171Google Scholar
  160. Prothero DR (2006) After the dinosaurs: the age of mammals. Indiana University Press, Bloomington, INGoogle Scholar
  161. Quinn A, Wilson DE (2004) Daubentonia madagascariensis. Mamm Species 740:1–6Google Scholar
  162. Reilly SM, McBrayer LD, White TD (2001) Prey processing in amniotes: biomechanical and behavioral patterns of food reduction. Comp Biochem Physiol A 128(3):397–415Google Scholar
  163. Reisz RR, Müller J (2004) Molecular timescales and the fossil record: a paleontological perspective. Trends Genet 20(5):237–247PubMedGoogle Scholar
  164. Reisz RR, Sues H-D (2000) Herbivory in late Paleozoic and Triassic terrestrial vertebrates. In: Sues H-D (ed) Evolution of herbivory in terrestrial vertebrates. Cambridge Univ Press, Cambridge, UK, pp 9–41Google Scholar
  165. Rensberger JM, Koenigswald Wv (1980) Functional and phylogenetic interpretation of enamel microstructure in rhinoceroses. Paleobiology 6(4):477–495Google Scholar
  166. Rieppel O (2002) Feeding mechanics in Triassic stem-group sauropterygians: the anatomy of a successful invasion of Mesozoic seas. Zool J Linn Soc 135(1):33–63Google Scholar
  167. Rose KD (2006) The beginning of the age of mammals. The Johns Hopkins University Press, Baltimore, MDGoogle Scholar
  168. Rose KD, Walker A, Jacobs LL (1981) Function of the mandibular tooth comb in living and extinct mammals. Nature 289(5798):583–585PubMedGoogle Scholar
  169. Ross CF, Eckhardt A, Herrel A, Hylander WL, Metzger KA, Schaerlaeken B, Washington RL, Williams SH (2007) Modulation of intra-oral processing in mammals and lepidosaurs. Integr Comp Biol 47(1):118–136.  https://doi.org/10.1093/icb/icm044CrossRefPubMedPubMedCentralGoogle Scholar
  170. Rougier GW, Martinelli AG, Forasiepi AM, Novacek MJ (2007) New Jurassic mammals from Patagonia, Argentina: a reappraisal of australosphenidan morphology and interrelationships. Amer Mus Novit 3566:1–54Google Scholar
  171. Rowe T, Rich TH, Vickers-Rich P, Springer M, Woodburne MO (2008) The oldest platypus and its bearing on divergence timing of the platypus and echidna clades. Proc Natl Acad Sci USA 105(4):1238–1242.  https://doi.org/10.1073/pnas.0706385105CrossRefPubMedGoogle Scholar
  172. Rubidge BS, Sidor CA (2001) Evolutionary patterns among Permo-Triassic therapsids. Annu Rev Ecol Syst 32:449–480Google Scholar
  173. Ruta M, Coates MI, Quicke DLJ (2003) Early tetrapod relationships revisited. Biol Rev 78(2):251–345.  https://doi.org/10.1017/S1464793102006103CrossRefPubMedGoogle Scholar
  174. Rybczynski N, Reisz RR (2001) Earliest evidence for efficient oral processing in a terrestrial herbivore. Nature 411(6838):684–687.  https://doi.org/10.1038/35079567CrossRefPubMedGoogle Scholar
  175. Sakai T, Yamada H (1992) Molar structure in Australian marsupials. In: Smith P, Tchernov E (eds) Structure, function and evolution of teeth. Freund Publishing House, London, pp 103–114Google Scholar
  176. Sander PM (1999) The microstructure of reptilian tooth enamel: terminology, function, and phylogeny. Münchner Geowiss Abh 38(A):1–102Google Scholar
  177. Sander PM (2000) Prismless enamel in amniotes: terminology, function and evolution. In: Teaford MF, Smith MM, Ferguson MWJ (eds) Development, function and evolution of teeth. Cambridge University Press, Cambridge, UK, pp 92–106Google Scholar
  178. Sanderson SL, Wassersug R (1993) Convergent and alternative designs for vertebrate suspension feeding. In: Hall BK (ed) The skull, vol 3. Functional and evolutionary mechanisms. The University of Chicago Press, Chicago, pp 37–112Google Scholar
  179. Sauvage H-E (1874) Mémoire sur les Dinosauriens et les Crocodiliens des terrains jurassiques de Boulogne-sur-Mer. Mém Soc Géol France, Sér 2, 10(2):1–58Google Scholar
  180. Savage RJG (1977) Evolution in carnivorous mammals. Palaeontology 20(2):237–271Google Scholar
  181. Schoch RR, Sues H-D (2015) A Middle Triassic stem-turtle and the evolution of the turtle body plan. Nature 523(7562):584–587.  https://doi.org/10.1038/nature14472CrossRefPubMedPubMedCentralGoogle Scholar
  182. Schultz JA, Martin T (2014) Function of pretribosphenic and tribosphenic mammalian molars inferred from 3D animation. Naturwissenschaften 101(10):771–781.  https://doi.org/10.1007/s00114-014-1214-yCrossRefPubMedGoogle Scholar
  183. Schultz JA, Krause DW, Koenigswald Wv, Dumont ER (2014) Dental function and diet of Vintana sertichi (Mammalia, Gondwanatheria) from the Late Cretaceous of Madagascar. J Vert Paleontol 34(S1):182–202.  https://doi.org/10.1080/02724634.2014.965778Google Scholar
  184. Schultze, H-P (1969) Die Faltenzähne der rhipidistiiden Crossopterygier, der Tetrapoden und der Actinopterygier-Gattung Lepisosteus; nebst einer Beschreibung der Zahnstruktur von Onychodus (struniiformer Crossopterygier). Palaeontol Ital 65:63–137Google Scholar
  185. Schultze H-P (1970) Folded teeth and the monophyly of tetrapods. Amer Mus Novit 2408:1–10Google Scholar
  186. Shoshani J, West RM, Court NC, Savage RJG, Harris JM (1996) The earliest proboscideans: general plan, taxonomy and palaeoecology. In: Shoshani J, Tassy P (eds) The Proboscidea: evolution and palaeoecology of elephants and their relatives. Oxford University Press, Oxford, pp 57–75Google Scholar
  187. Sidor CA, Hopson JA (1998) Ghost lineages and “mammalness”: assessing the temporal pattern of character acquisition in the Synapsida. Paleobiology 24(2):254–273Google Scholar
  188. Sigurdsen T, Bolt JR (2010) The Lower Permian amphibamid Doleserpeton (Temnospondyli: Dissorophoidea), the interrelationships of amphibamids, and the origin of modern amphibians. J Vert Paleontol 30(5):1360–1377.  https://doi.org/10.1080/02724634.2010.501445CrossRefGoogle Scholar
  189. Silverman HB, Dunbar MJ (1980) Aggressive tusk use by the narwhal (Monodon monoceros L.). Nature 284(5751):57–58Google Scholar
  190. Simpson GG (1933) Paleobiology of Jurassic mammals. Paleobiologica 5:127–158Google Scholar
  191. Simpson GG (1936) Studies of the earliest mammalian dentitions. Dental Cosmos 1936 (Aug.–Sept.):2–24Google Scholar
  192. Simpson GG (1960) Diagnosis of the classes Reptilia and Mammalia. Evolution 14(3):388–392Google Scholar
  193. Stafford BJ, Szalay FS (2000) Craniodental functional morphology and taxonomy of dermopterans. J Mammal 81(2):360–385.  https://doi.org/10.1644/1545-1542(2000)081%3c0360:cfmato%3e2.0.co;2Google Scholar
  194. Stucky RK (1998) Eocene bunodont and bunoselenodont Artiodactyla (“dichobunids”). In: Janis CM, Scott KM, Jacobs LL (eds) Evolution of Tertiary mammals of North America, vol 1. Terrestrial carnivores, ungulates, and ungulatelike mammals. Cambridge University Press, Cambridge, UK, pp 358–374Google Scholar
  195. Sudre J, Legendre S (1992) Ungulates from the Paleogene of western Europe: relations between their evolution and environmental changes during that period. In: Spitz J, Janeau G, Gonzalez G, Aulagnier S (eds) Ongulés/Ungulates 91. S.F.E.P.M.-I.R.G.M, Paris, pp 15–25Google Scholar
  196. Sues H-D (1991) Venom-conducting teeth in a Triassic reptile. Nature 351(6322):141–143Google Scholar
  197. Sues H-D, Reisz RR (1998) Origins and early evolution of herbivory in tetrapods. Trends Ecol Evol 13(4):141–145Google Scholar
  198. Swindler DR (2002) Primate dentitions: an introduction to the teeth of non-human primates. Cambridge University Press, Cambridge, UKGoogle Scholar
  199. Thenius E (1989) Zähne und Gebiß der Säugetiere. Walter de Gruyter, BerlinGoogle Scholar
  200. Thomason JJ, Russell AP (1986) Mechanical factors in the evolution of the mammalian secondary palate: a theoretical analysis. J Morphol 189(2):199–213PubMedGoogle Scholar
  201. Tiedemann R (1997) Sexual selection in Asian elephants. Science 278(5343):1547–1551Google Scholar
  202. Todd TW (1918) An introduction to the mammalian dentition. C.V. Mosby Company, St. LouisGoogle Scholar
  203. Ungar PS (2010) Mammal teeth: origin, evolution, and diversity. The Johns Hopkins University Press, Baltimore, MDGoogle Scholar
  204. Ungar PS (2011) Dental evidence for the diets of Plio-Pleistocene hominins. Yearb Phys Anthropol 54:47–62.  https://doi.org/10.1002/Ajpa.21610CrossRefGoogle Scholar
  205. Ungar PS, Lucas PW (2010) Tooth form and function in biological anthropology. In: Larsen CS (ed) A companion to biological anthropology. Wiley-Blackwell, Malden, MA, pp 516–529Google Scholar
  206. van Nievelt AFH, Smith KK (2005) To replace or not to replace: the significance of reduced functional tooth replacement in marsupial and placental mammals. Paleobiology 31(2):324–346.  https://doi.org/10.1666/0094-8373(2005)031%5b0324:trontr%5d2.0.co;2Google Scholar
  207. Van Valkenburgh B (2007) Déjà vu: the evolution of feeding morphologies in the Carnivora. Integr Comp Biol 47(1):147–163.  https://doi.org/10.1093/icb/icm016CrossRefGoogle Scholar
  208. Vizcaíno SF (2009) The teeth of the “toothless”: novelties and key innovations in the evolution of xenarthrans (Mammalia, Xenarthra). Paleobiology 35(3):343–366.  https://doi.org/10.1666/0094-8373-35.3.343CrossRefGoogle Scholar
  209. Vonk FJ, Admiraal JF, Jackson K, Reshef R, de Bakker MAG, Vanderschoot K, van den Berge I, van Atten M, Burgerhout E, Beck A, Mirtschin PJ, Kochva E, Witte F, Fry BG, Woods AE, Richardson MK (2008) Evolutionary origin and development of snake fangs. Nature 454(7204):630–633.  https://doi.org/10.1038/nature07178CrossRefPubMedGoogle Scholar
  210. Ward R (1998) Roland Ward’s African records of big game. Rowland Ward Publications, San Antonio, TXGoogle Scholar
  211. Waters NE (1980) Some mechanical and physical properties of teeth. In: Vincent JFV, Currey JD (eds) The mechanical properties of biological materials. The Society for Experimental Biology, London, pp 99–135Google Scholar
  212. Weller JM (1968) Evolution of mammalian teeth. J Paleontol 42(2):268–290Google Scholar
  213. Wells RT (1989) Vombatidae. In: Walton DW, Richardson BJ (eds) Fauna of Australia, vol 1B. Mammalia. Australian Government Publishing Service, Canberra, ACT, pp 755–768Google Scholar
  214. Werdelin L (1987) Jaw geometry and molar morphology in marsupial carnivores: analysis of a constraint and its macroevolutionary consequences. Paleobiology 13(3):342–35Google Scholar
  215. Werdelin L (1988) Circumventing a constraint: the case of Thylacoleo (Marsupialia: Thylacoleonidae). Austr J Zool 36(5):565–571Google Scholar
  216. Werth AJ (2000) Feeding in marine mammals. In: Schwenk K (ed) Feeding: form, function and evolution in tetrapod vertebrates. Academic Press, New York, pp 475–514Google Scholar
  217. Whitlock JA, Richman JM (2013) Biology of tooth replacement in amniotes. Int J Oral Sci 2013(5):66–70PubMedPubMedCentralGoogle Scholar
  218. Wilson GP, Evans AR, Corfe IJ, Smits PD, Fortelius M, Jernvall J (2012) Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483(7390):457–460.  https://doi.org/10.1038/Nature10880CrossRefPubMedGoogle Scholar
  219. Wood AE (1962) The Early Tertiary rodents of the family Paramyidae. Trans Amer Phil Soc 52(1):1–261Google Scholar
  220. Wood CB, Dumont ER, Crompton AW (1999) New studies of enamel microstructure in Mesozoic mammals: a review of enamel prisms as a mammalian synapomorphy. J Mamm Evol 6(2):177–213.  https://doi.org/10.1023/A:1020624222324CrossRefGoogle Scholar
  221. Wood CB, Rougier GW (2005) Updating and recoding enamel microstructure in Mesozoic mammals: in search of discrete characters for phylogenetic reconstruction. J Mamm Evol 12(3):433–460.  https://doi.org/10.1007/s10914-005-6971-0CrossRefGoogle Scholar
  222. Wood CB, Stern DN (1997) The earliest prisms in reptilian and mammalian enamel. In: Koenigswald Wv, Sander PM (eds) Tooth enamel microstructure. A. A. Balkema, Rotterdam, pp 63–83Google Scholar
  223. Woodburne MO (2003) Monotremes as pretribosphenic mammals. J Mamm Evol 10(3):195–248.  https://doi.org/10.1023/B:JOMM.0000015104.29857.f0CrossRefGoogle Scholar
  224. Woodburne MO (1987) The Ektopodontidae, an unusual family of Neogene phalangeroid marsupials. In: Archer M (ed) Possums and opossums: studies in evolution. Surrey Beatty and Sons, Chipping Norton, NSW, pp 603–606Google Scholar
  225. Wu X-C, Sues H-D (1996) Anatomy and phylogenetic relationships of Chimaerasuchus paradoxus, an unusual crocodyliform reptile from the Lower Cretaceous of Hubei. China. J Vert Paleontol 16(4):688–702Google Scholar
  226. Yilmaz ED, Schneider GA, Swain MV (2015) Influence of structural hierarchy on the fracture behaviour of tooth enamel. Phil Trans R Soc A Math Phys Eng Sci 373(2036). https://doi.org/10.1098/rsta.2014.0130Google Scholar
  227. Zahradnicek O, Horacek I, Tucker AS (2008) Viperous fangs: development and evolution of the venom canal. Mech Dev 125(9–10):786–796.  https://doi.org/10.1016/j.mod.2008.06.008CrossRefPubMedGoogle Scholar
  228. Zhang F-K, Crompton AW, Luo Z-X, Schaff CR (1998) Pattern of dental replacement of Sinoconodon and its implications for evolution of mammals. Vert PalAsiat 36(3):197–217Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of AnthropologyUniversity of ArkansasFayettevilleUSA
  2. 2.Department of PaleobiologyNational Museum of Natural History, Smithsonian InstitutionWashington, D.C.USA

Personalised recommendations