Advertisement

Ionic Polymer-Metal Composite Actuators Operable in Dry Conditions

  • Fatma Aydin Unal
  • Hakan Burhan
  • Sumeyye Karakus
  • Gizem Karaelioglu
  • Fatih SenEmail author
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Ionic polymer-metal composite (IPMC) have great applications, in terms of being utilized in areas, such as actuators, artificial muscles and more. These composite can also be used for robotics, biomedical and biomimetic applications. Among these applications, ionic polymer metal composite actuators are mostly preferred devices used in some applications, such as biomimetic robotics, biomedical devices, manipulation systems etc. For these types of actuators, ion-exchange polymer-metal composite (IPMC) is very attractive and active materials, and the synthesis and characterization conditions are very important parameters that should be thought. For this reason, this chapter provides information on ionic polymer metal composite actuators that can be operated under dry conditions.

Keywords

Ionic polymer Metal composite Actuators Dry conditions IPMC 

References

  1. 1.
    Mudigonda, A.: Static and dynamic characterization of ionic polymer metal composite-artificial muscles. Master Thesis, Ohio University (2006)Google Scholar
  2. 2.
    Shariati, A., Meghdari, A., Shariati, P.: Intelligent control of an IPMC actuated manipulator using emotional learning based controller. In: Proceedings of SPIE, Metamaterials: Funamentals and Applications, vol. 7029, p. 70291 (2008)Google Scholar
  3. 3.
    Kim, K.J.: Ionic polymer-metal composite as a new actuator and transducer material. In: Kim, K.J., Tadokoro, S. (eds.) Electroactive Polymers for Robotic Applications, pp. 153–164. Springer, London (2007)CrossRefGoogle Scholar
  4. 4.
    Simaite, A.: Development of ionic electroactive actuators with improved interfacial adhesion: towards the fabrication of inkjet printable artificial muscles. Doctoral Thesis, l’Institut National des Sciences Appliquées de Toulouse, Toulouse (2015)Google Scholar
  5. 5.
    Wang, X.L., Oh, I.K., Cheng, T.H.: Mechanical model and analysis of ionic polymer metal composite biomimetic actuators. In: Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, pp. 4751–4756 (2008)Google Scholar
  6. 6.
    Konyo, M., Tadokoro, S., Asaka, K.: Applications of ionic polymer-metal composite: multiple-DOF devices using soft actuators and sensors. In: Kim, K.J., Tadokoro, S. (eds.) Electroactive Polymers for Robotic Applications, pp. 227–262. Springer, London (1992)Google Scholar
  7. 7.
    Simpson, J.: Modeling and optimizing IPMC microgrippers. Master Thesis, The University of New Mexico (2015)Google Scholar
  8. 8.
    Hines, L., Petersen, K., Lum, G.Z., Sitti, M.: Soft actuators for small-scale robotics. Adv. Mater. 29(13), 1603483 (2017)CrossRefGoogle Scholar
  9. 9.
    Chen Z., Tan X., Shahinpoor M.: Quasi-static positioning of ionic polymer-metal composite (IPMC) actuators. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, CA, pp. 60–65 (2005)Google Scholar
  10. 10.
    Gutta, S.: Modeling and control of a flexible ionic polymer metal composite (IPMC) actuator for underwater propulsion. Doctoral Thesis, University of Nevada, Las Vegas (2011)Google Scholar
  11. 11.
    Nam, J.: Ionic polymer-metal composite actuators based on nafion blends with functional polymers. Master Thesis, Ewha Womans University, South Korea (2016)Google Scholar
  12. 12.
    Shintake, J.: Functional soft robotic actuators based on dielectric elastomers. Doctoral Thesis, Lausanne: Ecole Polytechnique F´ed´erale de Lausanne, Switzerland (2016)Google Scholar
  13. 13.
    Yim, W., Trabia, M., Renno, J., Lee, J.: Dynamic modeling of segmented ionic polymer metal composite (IPMC). In: International Conference on Intelligent Robots and Systems (IROS), Beijing, pp. 5459–5464 (2006)Google Scholar
  14. 14.
    Gutta, S., Lee, J.S., Trabia, M.B., Yim, W.: Modeling of ionic polymer metal composite (IPMC) actuator dynamics using large deflection beam model. Mech. Solids Struct. Parts A B 10, 105–112 (2007)CrossRefGoogle Scholar
  15. 15.
    Nemat-Nasser, S., Zamani, S.: Experimental study of nafion-and flemion-based ionic polymer-metal composite (IPMC’s) with ethylene glycol as solvent. In: Proceedings of SPIE, Electroactive Polymer Actuators and Devices (EAPAD), vol. 5051, pp. 233–244 (2003)Google Scholar
  16. 16.
    Lei, H.: Modeling and fabrication of ionic polymer-metal composite (IPMC) sensors. Doctoral Thesis, Michigan State University ABD (2015)Google Scholar
  17. 17.
    Hwang, T., Palmre, V., Nam, J., Lee, D.C., Kwang, J.K.: A new ionic polymer–metal composite based on Nafion/poly(vinyl alcohol-co-ethylene) blends. Smart Mater. Struct. 24, 105011 (2015)CrossRefGoogle Scholar
  18. 18.
    Rasouli, H., Naji, L., Hosseini, M.G.: Electrochemical and electromechanical behavior of Nafion-based soft actuators with PPy/CB/MWCNT nanocomposite electrodes. RSC Adv. 7, 3190–3203 (2017)CrossRefGoogle Scholar
  19. 19.
    Nam, J., Hwang, T., Kim, K.J., Lee, D.: A new high-performance ionic polymer–metal composite based on Nafion/polyimide blends. Smart Mater. Struct. 26, 35015 (2017)CrossRefGoogle Scholar
  20. 20.
    Shahinpoor, M., Bar-Cohed, Y., Xue, T., Simpson, J.O., Smith J.: Ionic polymer-metal composite (IPMC) as biomimetic sensors and actuators-artificial muscles. In: Proceedings of SPIE’s 5Ih Annual International Symposium on Smart Structures and Materials, San Diego, CA., pp. 3324–3327 (1998)Google Scholar
  21. 21.
    Lei, H., Li, W., Tan, X.: Encapsulation of ionic polymer-metal composite (IPMC) sensors with thick parylene: fabrication process and characterization results. Sens. Actuators A 217, 1–12 (2014)CrossRefGoogle Scholar
  22. 22.
    Lee, S.G., Park, H.C., Pandita, S.D., Yoo, Y.: Performance improvement of IPMC (Ionic Polymer Metal Composite) for a flapping actuator. Int. J. Control Autom. Syst. 4, 748–755 (2006)Google Scholar
  23. 23.
    Labrador, D.: Characterization of the blocking force generated by buckypaper composite actuators. Electronic Theses, Treatises and Dissertations-Florida State University, ABD (2010)Google Scholar
  24. 24.
    Fang, B.K., Ju, M.S., Lin, C.C.K.: A new approach to develop ionic polymer–metal composite (IPMC) actuator: fabrication and control for active catheter systems. Sens. Actuators A 137, 321–329 (2007)CrossRefGoogle Scholar
  25. 25.
    Almomani, A., Hong, W., Hong, W., Montazami, R.: Influence of temperature on the electromechanical properties of ionic liquid-doped ionic polymer-metal composite actuators. Polymers 9, 358 (2017)CrossRefGoogle Scholar
  26. 26.
    Bhandari, B., Lee, G.Y., Ahn, S.H.: A review on IPMC material and actuators and sensors: fabrication, characterization and applications. Int. J. Precis. Eng. Manuf. 13, 141–163 (2012)CrossRefGoogle Scholar
  27. 27.
    Park, K., Yoon, M.K., Lee, S., Choi, J., Thubrikar, M.: Effects of electrode degradation and solvent evaporation on the performance of ionic-polymer-metal composite sensors. Smart Mater. Struct. 19, 075002 (2010)CrossRefGoogle Scholar
  28. 28.
    Kamamichi, N., Maeba, T., Yamakita, M., Mukai, T.: Fabrication of bucky gel actuator/sensor devices based on printing method. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 582–587. IEEE (2008)Google Scholar
  29. 29.
    Park, K., Lee, B., Kim, H.M., Choi, K.S., Hwang, G., Byun, G.S., Lee, H.K.: IPMC based biosensor: for the detection of biceps brachii muscle movements. Int. J. Electrochem. Sci. 4098–4109 (2013)Google Scholar
  30. 30.
    Hong, W.: Influence of conductive network composite thickness and structure on performance of ionic polymer-metal composite transducer. Master Thesis, Iowa State University Capstones, ABD (2013)Google Scholar
  31. 31.
    Nakshatharan, S.S., Vunder, V., Põldsalu, I., Johanson, U., Punning, A., Aabloo, A.: Modelling and control of ionic electroactive polymer actuators under varying humidity conditions. Actuators 7, 7 (2018)CrossRefGoogle Scholar
  32. 32.
    Park, K.: Characterization of the solvent evaporation effect on ionic polymer-metal composite sensors. J. Korean Phys. Soc. 59, 3401–3409 (2011)CrossRefGoogle Scholar
  33. 33.
    Park, K.: Modeling of IPMC (Ionic Polymer-Metal Composite) sensor to effectively detect the bending angles of a body. J. Sens. Sci. Technol. 20, 375–381 (2011)CrossRefGoogle Scholar
  34. 34.
    Cortes, M.T., Moreno, J.C.: Artificial muscles based on conducting polymers. E-Polymers 41, 1–42 (2003)Google Scholar
  35. 35.
    Park, K., Yoon, M., Lee, S., Choi, J., Thubrikar, M.: Effects of electrode degradation and solvent evaporation on the performance of ionic-polymer–metal composite sensors. Smart Mater. Struct. 19, 075002 (2010)CrossRefGoogle Scholar
  36. 36.
    Xing, H.L., Jeon, J.H., Park, K.C., Il-Kwon, Oh: Active disturbance rejection control for precise position tracking of ionic polymer-metal composite actuators. IEEE/ASME Trans Mechatron. 18, 86–95 (2013)CrossRefGoogle Scholar
  37. 37.
    Bhat, N.D.: Modeling and precision control of ionic polymer metal composite. Doctoral Thesis, Texas A&M University, ABD (2003)Google Scholar
  38. 38.
    Sen, B., Demirkan, B., Savk, A., Karahan, Gülbay S., Sen, F.: Trimetallic PdRuNi nanocomposite decorated on graphene oxide: a superior catalyst for the hydrogen evolution reaction. Int. J. Hydrog. Energy 43, 17984–17992 (2018)CrossRefGoogle Scholar
  39. 39.
    Eris, S., Daşdelen, Z., Yıldız, Y., Sen, F.: Nanostructured polyaniline-rGO decorated platinum catalyst with enhanced activity and durability for methanol oxidation. Int. J. Hydrog. Energy 43(3), 1337–1343 (2018)CrossRefGoogle Scholar
  40. 40.
    Eris, S., Daşdelen, Z., Sen, F.: Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposite for direct methanol fuel cells. J. Colloid Interface Sci. 513, 767–773 (2018)CrossRefGoogle Scholar
  41. 41.
    Şahin, B., Aygün, A., Gündüz, H., Şahin, K., Demir, E., Akocak, S., Şen, F.: Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf. B 163, 119–124 (2018)CrossRefGoogle Scholar
  42. 42.
    Şen, B., Akdere, E.H., Şavk, A., Gültekin, E., Göksu, H., Şen, F.: A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malononitrile. Appl. Catal. B 225(5), 148–153 (2018)CrossRefGoogle Scholar
  43. 43.
    Eris, S., Daşdelen, Z., Sen, F.: Investigation of electrocatalytic activity and stability of Pt@f-VC catalyst prepared by in-situ synthesis for methanol electrooxidation. Int. J. Hydrog. Energy 43(1), 385–390 (2018)Google Scholar
  44. 44.
    Gulçin, İ., Taslimi, P., Aygün, A., Sadeghian, N., Bastem, E., Kufrevioglu, O.I., Turkan, F., Şen, F.: Antidiabetic and antiparasitic potentials: Inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. Int. J. Biol. Macromol. 119, 41–746 (2018)CrossRefGoogle Scholar
  45. 45.
    Sen, B., Demirkan, B., Levent, M., Savk, A., Sen, F.: Silica-based monodisperse PdCo nanohybrids as highly efficient and stable nanocatalyst for hydrogen evolution reaction. Int. J. Hydrog. Energy 43, 20234–20242 (2018)CrossRefGoogle Scholar
  46. 46.
    Koskun, Y., Şavk, A., Şen, B., Şen, F.: Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposite. Anal. Chim. Acta 1010, 37–43 (2018)CrossRefGoogle Scholar
  47. 47.
    Şen, B., Aygün, A., Şavk, A., Akocak, S., Şen, F.: Bimetallic palladium-iridium alloy nanoparticles as highly efficient and stable catalyst for the hydrogen evolution reaction. Int. J. Hydrog. Energy 43, 20183–20191 (2018)CrossRefGoogle Scholar
  48. 48.
    Sen, B., Savk, A., Sen, F.: Highly efficient monodisperse nanoparticles confined in the carbon black hybrid material for hydrogen liberation. J. Colloid Interface Sci. 520, 112–118 (2018)CrossRefGoogle Scholar
  49. 49.
    Sen, B., Kuyuldar, E., Demirkan, B., Onal-Okyay, T., Savk, A., Sen, F.: Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposite for dehydrocoupling of dimethylamine borane. J. Colloid Interface Sci. 526, 480–486 (2018)CrossRefGoogle Scholar
  50. 50.
    Sen, B., Şavk, A., Kuyuldar, E., Karahan-Gülbay, S., Sen, F.: Hydrogen liberation from the hydrolytic dehydrogenation of hydrazine borane in acidic media. Int. J. Hydrog. Energy 43, 17978–17983 (2018)CrossRefGoogle Scholar
  51. 51.
    Sen, B., Demirkan, B., Şimşek, B., Savk, A., Sen, F.: Monodisperse palladium nanocatalysts for dehydrocoupling of dimethylamineborane. Nano-Struct. Nano-Objects 16, 209–214 (2018)CrossRefGoogle Scholar
  52. 52.
    Göksu, H., Zengin, N., Karaosman, A., Sen, F.: Highly active and reusable Pd/AlO(OH) nanoparticles for the suzuki cross-coupling reaction. Curr. Organocatal. 5, 1–8 (2018)CrossRefGoogle Scholar
  53. 53.
    Sen, B., Demirkan, B., Savk, A., Kartop, R., Nas, M.S., Alma, M.H., Sürdem, S., Şen, F.: High-performance graphite-supported ruthenium nanocatalyst for hydrogen evolution reaction. J. Mol. Liq. 268, 807–812 (2018)CrossRefGoogle Scholar
  54. 54.
    Sen, B., Aygün, A., Onal-Okyay, T., Şavk, A., Kartop, R., Şen, F.: Monodisperse palladium nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane. Int. J. Hydrog. Energy 43, 20176–20182 (2018)CrossRefGoogle Scholar
  55. 55.
    Günbatar, S., Aygun, A., Karataş, Y., Gülcan, M., Şen, F.: Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature. J. Colloid Interface Sci. 530, 321–327 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fatma Aydin Unal
    • 1
    • 2
  • Hakan Burhan
    • 2
  • Sumeyye Karakus
    • 2
  • Gizem Karaelioglu
    • 2
  • Fatih Sen
    • 2
    Email author
  1. 1.Faculty of Engineering, Metallurgical and Materials Engineering DepartmentAlanya Alaaddin Keykubat UniversityAlanya, AntalyaTurkey
  2. 2.Sen Research Group, Faculty of Art and Science, Department of BiochemistryDumlupinar UniversityKutahyaTurkey

Personalised recommendations