Advertisement

Study on Time-Dependent Bending Response of IPMC Actuator

  • Hyung-Man KimEmail author
  • N. D. Vinh
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Ionic polymer metal composite (IPMC) actuators have considerable potential for a wide range of applications. Although IPMC actuators are widely studied for their electromechanical properties, most studies have been conducted at the ambient conditions. The electromechanical performance of IPMC actuators at higher temperature is still far from understood. IPMCs are polymer-based soft composites that can be designed as soft actuators and sensors. IPMC actuators have several unique properties, including low density, large bending strain, low noise, high resilience, and low operation voltage; which make their application more practical compare to many of their metal- or ceramic-based counterparts. This chapter is a summary of all recent findings and current state-of-the art manufacturing techniques, phenomenological laws and mechanical and electrical characteristics. The time dependent bending characteristics of IPMC actuators has been widely studied, experimentally, and theoretically, as artificial muscles for biomedical applications, biomimetic micro-robotics, and harsh environment tools. The first one of contents presents a brief summary of the fundamental properties and characteristics of IPMC. The following addresses in detail the electronic and electromechanical characteristics of IPMCs, the phenomenological Modelling of the underlying sensing and actuation mechanisms in IPMCs and the potential application areas for IPMCs.

Keywords

Ionic polymer metal composite IPMC actuator Actuation mechanisms Time dependent bending characteristics Electromechanical characteristics Modelling Experiment Application 

List of Abbreviation

ALE

Arbitrary Lagrangian Eulerian

ALT

Argon Laser Trabeculoplasty

BDF

Backward Differential Formulation

CNT

Carbon Nano Tube

DC

Direct Current

DPP-4

Dipeptidyl Peptidase-4

EAC

Electro Active Ceramic

EAP

Electro Active Polymer

GLP

Glucagon-Like Peptide

GUI

Graphic User Interface

FSI

Fluid-Structure Interaction

HDL

High-Density Lipid

IDDM

Insulin-Dependent Diabetes Mellitus

IPMC

Ionic Polymer Metal Composite

IOP

Intraocular Pressure

IU

Insulin Unit

MUMPS

MUltifrontal Massively Parallel Sparse direct Solver

NIDDM

Non-Insulin-Dependent Diabetes Mellitus

PAA

Poly Acrylic Acid

PAMPS

Poly Acrylicamido Methyl Propane Sulfonate

PDE

Partial Differential Equation

PARDISO

Parallel Direct Sparse Solver

PVA

Poly Vinyl Alcohol

SMA

Shape Memory Alloy

TBA

Tetra Butyl Ammonium

Notes

Acknowledgements

This work was supported partly by Basic Science Research Program (No. 2015R1D1A1A02060006) and partly by Korea-Canada Cooperative Development Program (No. 2018K1A3A1A74064262) funded by the National Research Foundation of Korea (NRF).

References

  1. 1.
    Chu, W.-S., Lee, K.-T., Song, S.-H., Han, M.-W., Lee, J.-Y., Kim, H.-S., Kim, H.-S., Kim, M.-S., Park, Y.-J.: Review of biomimetic underwater robots using smart actuators. Int. J. Precis. Eng. Man. 13(7), 1281–1292 (2012).  https://doi.org/10.1007/s12541-012-0226-9CrossRefGoogle Scholar
  2. 2.
    Frecker, M.I.: Recent advances in optimization of smart structures and actuators. J. Intell. Mater. Syst. Struct. 14(4–5), 207–216 (2003).  https://doi.org/10.1177/104538903031062CrossRefGoogle Scholar
  3. 3.
    Ranjbarzadeh, S.: Modeling, simulation, and applications of ionic polymer metal composites. Dissertation, Universidade Federal do Rio de Janeiro (2017)Google Scholar
  4. 4.
    Shahinpoor, M., Bar-Cohen, Y., Simpson, J.O., Smith, J.: Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators, and artificial muscles-a review. Smart Mater. Struct. 7(6), R15 (1998).  https://doi.org/10.1088/0964-1726/7/6/001CrossRefGoogle Scholar
  5. 5.
    Bar-Cohen, Y. (ed.): Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges, 2nd edn. SPIE press, USA, Washington (2004)Google Scholar
  6. 6.
    Osada, Y., Okuzaki, H., Hori, H.: A polymer gel with electrically driven motility. Nature 355(6357), 242–245 (1992).  https://doi.org/10.1038/355242a0CrossRefGoogle Scholar
  7. 7.
    Shahinpoor, M., Kim, K.J.: Ionic polymer metal composites: I Fundamentals. Smart Mater. Struct. 10, 819–833 (2001).  https://doi.org/10.1088/0964-1726/10/4/327CrossRefGoogle Scholar
  8. 8.
    Kim, K.H., Shahinpoor, M.: Ionic polymer metal composites—II manufacturing techniques. Smart Mater. Struct. 12, 65–69 (2003).  https://doi.org/10.1088/0964-1726/12/1/308CrossRefGoogle Scholar
  9. 9.
    Shahinpoor, M., Kim, K.J.: Ionic polymer-metal composites: III modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Mater. Struct. 13, 1362–1388 (2004).  https://doi.org/10.1088/0964-1726/13/6/009CrossRefGoogle Scholar
  10. 10.
    Shahinpoor, M., Kim, K.J.: Ionic polymer-metal composites: IV industrial and medical applications. Smart Mater. Struct. 14, 197–214 (2005).  https://doi.org/10.1088/0964-1726/14/1/020CrossRefGoogle Scholar
  11. 11.
    Paquette, J.W., Kim, K.J.: Ionomeric electroactive polymer artificial muscle for naval applications. IEEE J. Ocean. Eng. 29, 729–737 (2004).  https://doi.org/10.1109/JOE.2004.833132CrossRefGoogle Scholar
  12. 12.
    Shahinpoor, M.: New effect in ionic polymeric gels: the ionic flexogelectric effect. In: Proceeding of PIE 1995 North American Conference on Smart Structures and Materials, San Diego, California, vol. 2441, paper no. 05 (1995)Google Scholar
  13. 13.
    Shahinpoor, M.: Microelectro-mechanics of ionic polymeric gels as synthetic robotic muscles. In: Proceeding SPIE North American Conference on Smart Structures and Materials, Orlando, Florida, vol. 2189, pp. 265–274 (1994)Google Scholar
  14. 14.
    Shahinpoor, M., Adolf, D., Segalman, D., Witkowski, W.: Electrically controlled polymeric gel actuators. US Patent Specification 5250167 (1993)Google Scholar
  15. 15.
    Shahinpoor, M.: Continuum electromechanics of ionic polymeric gels as artificial muscles for robotic applications. Smart Mater. Struct. 3, 367–372 (1993).  https://doi.org/10.1088/0964-1726/3/3/012CrossRefGoogle Scholar
  16. 16.
    Nemat-Nasser, S., Li, J.Y.: Electromechanical response of ionic polymer–metal composites. J. Appl. Phys. 87, 3321–3331 (2000).  https://doi.org/10.1063/1.372343CrossRefGoogle Scholar
  17. 17.
    Nemat-Nasser, S.: Micromechanics of actuation of ionic polymer–metal composites. J. Appl. Phys. 92, 2899–3331 (2002).  https://doi.org/10.1063/1.1495888CrossRefGoogle Scholar
  18. 18.
    Shahinpoor, M., Kim, K.J.: Mass transfer induced hydraulic actuation in ionic polymer–metal composites. J. Intell. Mater. Syst. Struct. 13, 369–376 (2002).  https://doi.org/10.1177/104538902761696715CrossRefGoogle Scholar
  19. 19.
    Newbury, K.M., Leo, J.D.: Linear electromechanical model of ionic polymer transducers-part I Model development. J. Intell. Mater. Syst. Struct. 14, 333–342 (2003).  https://doi.org/10.1177/1045389X03034976CrossRefGoogle Scholar
  20. 20.
    Nemat-Nasser, S., Wu, Y.: Comparative experimental study of the ionic polymer–metal composites with different backbone ionomers and in various cation forms. J. Appl. Phys. 93, 5255–5267 (2003).  https://doi.org/10.1063/1.1563300CrossRefGoogle Scholar
  21. 21.
    Weiland, L.M., Leo, D.J.: Computational analysis of ionic polymer cluster energetic. J. Appl. Phys. 97, 013541 (2005).  https://doi.org/10.1063/1.1819974CrossRefGoogle Scholar
  22. 22.
    Jo, C., Pugal, D., Oh, I.K., Kim, K.J.: Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog. Polym. Sci. 38, 1037–1066 (2013).  https://doi.org/10.1016/j.progpolymsci.2013.04.003CrossRefGoogle Scholar
  23. 23.
    Mauritz, K.A., Moore, R.B.: State of understanding of Nafion. Chem. Rev. 104(10), 4535–4586 (2004).  https://doi.org/10.1021/cr0207123CrossRefGoogle Scholar
  24. 24.
    Duncan, A.J., Leo, D.J., Long, T.E.: Beyond Nafion: charged macro-molecules tailored for performance as ionic polymer transducers. Macromolecules 41, 7765–7775 (2008).  https://doi.org/10.1021/ma800956vCrossRefGoogle Scholar
  25. 25.
    Curtin, D.E., Lousenberg, R.D., Henry, T.J., Tangeman, P.C., Tisack, M.E.: Advanced materials for improved PEMFC performance and life. J. Power Sour. 131, 41–48 (2004).  https://doi.org/10.1016/j.jpowsour.2004.01.023CrossRefGoogle Scholar
  26. 26.
    Bufalo, G.D., Placidi, L., Profiri, M.: A mixture theory framework for modeling the mechanical actuation of ionic polymer metal composites. Smart Mater. Struct. 17, 045010 (2008).  https://doi.org/10.1088/0964-1726/17/4/045010CrossRefGoogle Scholar
  27. 27.
    Cha, Y., Porfiri, M.: Mechanics and electrochemistry of ionic polymer metal composites. J. Mech. Phys. Solids 71, 156–178 (2014).  https://doi.org/10.1016/j.jmps.2014.07.006CrossRefGoogle Scholar
  28. 28.
    Nagpure, T., Chen, Z.: Control-oriented modeling of ionic polymer–metal composite enabled hydrogen gas production. Int. J. Hydrog. Energy 41(16), 6619–6629 (2016)CrossRefGoogle Scholar
  29. 29.
    Nemat-Nasser, S., Zamani, S., Tor, Y.: Effect of solvents on the chemical and physical properties of ionic polymer-metal composites. J. Appl. Phys. 99, 104902 (2006).  https://doi.org/10.1063/1.2194127CrossRefGoogle Scholar
  30. 30.
    Kim, K.J., Shahinpoor, M.: A review of ionic polymeric soft actuators and sensors. Soft Robot 1(1), 38–52 (2014).  https://doi.org/10.1089/soro.2013.0006CrossRefGoogle Scholar
  31. 31.
    Bar-Cohen, Y.: Electroactive polymers: current capabilities and challenges. In: SPIE’s 9th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics, pp. 1–7 (2002)Google Scholar
  32. 32.
    Bar-Cohen, Y., Zhang, Q.: Electroactive polymer actuators and sensors. MRS Bull. 5(3), 173–181 (2008).  https://doi.org/10.1126/science.284.5418.1340CrossRefGoogle Scholar
  33. 33.
    Bar-Cohen, Y., Leary, S.P., Shahinpoor, M., Harrison, J.S., Smith, J.G.: Electroactive polymer (EAP) actuators for planetary applications. In: 1999 Symposium on Smart Structures and Materials. International Society for Optics and Photonics, pp. 57–63 (1999)Google Scholar
  34. 34.
    Bar-Cohen, Y.: Electroactive polymers as artificial muscles: capabilities, potentials and challenges. Robotics 2000, 188–196 (2000)Google Scholar
  35. 35.
    Bar-Cohen, Y.: Electroactive polymers as artificial muscles: a review. J. Spacecr. Rockets 39(6), 822–827 (2002).  https://doi.org/10.2514/2.3902CrossRefGoogle Scholar
  36. 36.
    Bar-Cohen, Y., Kim, K.J., Choi, H.R., Madden, J.D.W.: Electroactive polymer materials. Smart Mater. Struct. 16(2), S197 (2007).  https://doi.org/10.1088/0964-1726/16/2/E01CrossRefGoogle Scholar
  37. 37.
    Keshavarzi, A., Shahinpoor, M., Kim, K.J., Lantz, J.W.: Blood pressure, pulse rate, and rhythm measurement using ionic polymer-metal composite sensors. In: 1999 Symposium on Smart Structures and Materials, pp. 369–376 (1999)Google Scholar
  38. 38.
    McDaid, A.J., Aw, K.C., Haemmerle, E., Shahinpoor, M., Xie, S.Q.: Adaptive tuning of a 2DOF controller for robust cell manipulation using IPMC actuators. J. Micromech. Microeng. 21(12), 125004 (2011).  https://doi.org/10.1088/0960-1317/21/12/125004CrossRefGoogle Scholar
  39. 39.
    Shahinpoor, M.: Smart thin sheet batteries made with ionic polymer metal composites (IPMC’S). In: ASME 2004 International Mechanical Engineering Congress and Exposition, pp. 97–102 (2004)Google Scholar
  40. 40.
    Bahramzadeh, Y., Shahinpoor, M.: Ionic polymer-metal composites (IPMCs) as dexterous manipulators and tactile sensors for minimally invasive robotic surgery. In: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, pp. 83402O–83402O (2012)Google Scholar
  41. 41.
    Van De Pol, F.C.M., Branebjerg, J.: Micro liquid-handling devices-a review. Micro System Technologies 90, pp. 799–805. Springer, Berlin, Heidelberg (1990)Google Scholar
  42. 42.
    Wallmersperger, T., Leo, D.J., Kothera, C.K.: Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling. J. Appl. Phys. 101, 024912 (2007).  https://doi.org/10.1063/1.2409362CrossRefGoogle Scholar
  43. 43.
    Nardinocchi, P., Pezzulla, M., Placidi, L.: Thermodynamically based multiphysic modeling of ionic polymer metal composites. J. Intell. Mater. Syst. Struct. 22, 1887–1897 (2011).  https://doi.org/10.1177/1045389X11417195CrossRefGoogle Scholar
  44. 44.
    Biswal, D.K., Bandopadhya, D., Dwivedy, S.K.: Preparation and experimental investigation of thermo-electromechanical behavior of Ag-IPMC actuator. Int. J. Precis. Eng. Manuf. 13, 777–782 (2011).  https://doi.org/10.1007/s12541-012-0102-7CrossRefGoogle Scholar
  45. 45.
    Biswal, D.K., Nayak, B.: Analysis of time dependent bending response of Ag-IPMC actuator. Procedia Eng. 144, 600–606 (2016).  https://doi.org/10.1016/j.proeng.2016.05.047CrossRefGoogle Scholar
  46. 46.
    COMSOL: COMSOL Multiphysics® Manual Guide version 4.4. https://www.comsol.com/release/4.4 (2013)
  47. 47.
    Coulson, J.M., Richardson, J.F.: Particle technology and separation processes. Chemical Engineering, Vol. 2, Butterworth-Heinemann (2002)Google Scholar
  48. 48.
    Chemitiganti, R.R.V., Spellman, C.W.: Management of progressive type 2 diabetes: role of insulin therapy. Osteopath. Med. Prim. Care 3, 5 (2009).  https://doi.org/10.1186/1750-4732-3-5CrossRefGoogle Scholar
  49. 49.
    Fitt, A.D., Gonzalez, G.: Fluid mechanics of the human eye: aqueous humour flow in the anterior chamber. Bull. Math. Biol. 68(1), 53–71 (2006).  https://doi.org/10.1007/s11538-005-9015-2CrossRefGoogle Scholar
  50. 50.
    Shahinpoor, M.: Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles. Smart Mater. Struct. 1(1), 91–94 (1992).  https://doi.org/10.1088/0964-1726/1/1/014CrossRefGoogle Scholar
  51. 51.
    Guo, S., Ge, Y., Li, L., Liu, S.: Underwater swimming micro robot using IPMC actuator. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, pp. 249–254 (2006)Google Scholar
  52. 52.
    Yeom, S.-W., Oh, I.-K.: A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater. Struct. 18(8), 085002 (2009).  https://doi.org/10.1088/0964-1726/18/8/085002CrossRefGoogle Scholar
  53. 53.
    Shen, Q., Wang, T., Liang, J., Wen, L.: Hydrodynamic performance of a biomimetic robotic swimmer actuated by ionic polymer–metal composite. Smart Mater. Struct. 22(7), 075035 (2013).  https://doi.org/10.1088/0964-1726/22/7/075035CrossRefGoogle Scholar
  54. 54.
    Kim, B., Kim, T., Liang, D.-H., Jung, J., Park, J.-O.: A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators. Smart Mater. Struct. 14(6), 1579 (2005).  https://doi.org/10.1088/0964-1726/14/6/051CrossRefGoogle Scholar
  55. 55.
    Kim, K.J., Yim, W., Paquette, J.W., Kim, D.: Ionic polymer-metal composites for underwater operation. J. Intell. Mater. Syst. Struct. 18(2), 123–131 (2007).  https://doi.org/10.1177/1045389X06063468CrossRefGoogle Scholar
  56. 56.
    Chen, Z., Um, T.I., Bart-Smith, H.: A novel fabrication of ionic polymer–metal composite membrane actuator capable of 3-dimensional kinematic motions. Sens. Actuators A Phys. 168(1), 131–139 (2011).  https://doi.org/10.1016/j.sna.2011.02.034CrossRefGoogle Scholar
  57. 57.
    Hubbard, J.J., Fleming, M., Palmre, V., Pugal, D., Kim, K.J., Kim, K.L.: Monolithic IPMC fins for propulsion and maneuvering in bioinspired underwater robotics. IEEE J. Ocean. Eng. 39(3), 540–551 (2014).  https://doi.org/10.1109/JOE.2013.2259318CrossRefGoogle Scholar
  58. 58.
    Cha, Y., Laut, J., Phamduy, P., Porfiri, M.: Swimming robots have scaling laws, too. IEEE/ASME Trans. Mechatron. 21(1), 598–600 (2016).  https://doi.org/10.1109/TMECH.2015.2442759CrossRefGoogle Scholar
  59. 59.
    Abdelnour, K., Mancia, E., Peterson, S.D., Porfiri, M.: Hydrodynamics of underwater propulsors based on ionic polymer–metal composites: a numerical study. Smart Mater. Struct. 18(8), 085006 (2009).  https://doi.org/10.1088/0964-1726/18/8/085006CrossRefGoogle Scholar
  60. 60.
    Lee, J.S., Gutta, S., Yim, W.: Open-loop control of ionic polymer metal composite (IPMC) based underwater actuator using a network of neural oscillator. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007, pp. 2132–2137 (2007).  https://doi.org/10.1109/iros.2007.4399603
  61. 61.
    Toonder, J.M., Bos, F., Broer, D., Andersion, P.D.: Artificial cilia for active micro-fluidic mixing. Lab Chip 8, 533–541 (2008).  https://doi.org/10.1039/b717681cCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electronic Telecommunication, Mechanical & Automotive Engineering and High Safety Vehicle Core Technology Research CenterINJE UniversityGimhaeRepublic of Korea

Personalised recommendations