Advertisement

Polysaccharide-Based Ionic Polymer Metal Composite Actuators

  • A. Popa
  • A. Filimon
  • L. LupaEmail author
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Cellulose and chitosan are naturally abundant biopolymers which can be used as ion exchange polymers in various applications. Due to their useful characteristics, a lot of research has been done on using these materials as a base for obtaining ionic polymer metal composite actuators. The present chapter discusses numerous ways of combination between polysaccharide and various electrically conductive materials such as carbon nanotubes and graphene in the presence or absence of different ionic liquids, and subsequent use of these materials to improve the actuation performance of the polysaccharide-based actuators. Though a lot of studies have been performed for obtaining optimal compositions and suitable methods in respect of polysaccharide-based ionic polymer metal composite actuators. There is still a niche to find the best composition structure and the most efficient and low-cost method of obtaining actuators in order to meet the needs of various industries. The search continues for actuators with enhanced mechanical, electrical and electroactive performance, with good durability and flexibility in processing.

References

  1. 1.
    Singh, V., Kumar, P., Sanghi, R.: Use of microwave irradiation in the grafting modification of the polysaccharide—a review. Prog. Polym. Sci. 37, 340–364 (2012).  https://doi.org/10.1016/j.progpolymsci.2011.07.005CrossRefGoogle Scholar
  2. 2.
    Dias, A.M., Cortez, A.R., Barsan, M., Santos, J., Brett, C.M., de Sousa, H.C.: ACS Sustain. Chem. Eng. 1, 1480–1492 (2013).  https://doi.org/10.1021/sc4002577CrossRefGoogle Scholar
  3. 3.
    Chirayil, C.J., Mathew, L., Thomas, S.: Review of recent research in nano cellulose preparation from different lignocellulosic fibres. Rev. Adv. Mater Sci. 37, 20–28 (2014)Google Scholar
  4. 4.
    Yi, H., Wu, L.-Q., Bentley, W.E., Ghodssi, R., Rubloff, G.W., Culver, J.N., Payne, G.F.: Biofabrication with Chitosan. Biomacromolecules 6, 2881–2894 (2005).  https://doi.org/10.1021/bm050410lCrossRefGoogle Scholar
  5. 5.
    Li, Y., Li, G., Peng, H., Chen, K.: Facile synthesis of electroactive polypyrroleechitosan composite nanospheres with controllable diameters. Polym. Int. 60(4), 647–651 (2011).  https://doi.org/10.1002/pi.2995CrossRefGoogle Scholar
  6. 6.
    Silva Simone, S., Mano João, F., Reis Rui, L.: Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem. 19, 1208–1220 (2017).  https://doi.org/10.1039/C6GC02827FCrossRefGoogle Scholar
  7. 7.
    Tiyaboonchai, W.: Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ. J. Sci. Technol. 11(3), 51–66 (2013)Google Scholar
  8. 8.
    Lu, L., Chen, W.: Biocompatible composite actuator: a supramolecular structure consisting of the biopolymer chitosan, carbon nanotubes, and an ionic liquid. Adv. Mater. 22(33), 3745–3748 (2010).  https://doi.org/10.1002/adma.201001134CrossRefGoogle Scholar
  9. 9.
    He, Q., Yu, M., Yang, X., Kim, K.J., Dai, Z.: An ionic electro-active actuator made with graphene film electrode, chitosan and ionic liquid. Smart Mater. Struct. 24(6), 065026 (9 pp) (2015).  https://doi.org/10.1088/0964-1726/24/6/065026
  10. 10.
    Cai, Z., Kim, J.: Characterization and electromechanical performance of cellulose-chitosan blend electro-active paper. Smart Mater. Struct. 17(3), 035028 (9 pp) (2008).  https://doi.org/10.1088/0964-1726/17/3/035028
  11. 11.
    Shang, J., Shao, Z., Chen, X.: Chitosan-based electroactive hydrogel, Chitosan-based electroactive hydrogel. Polymer 49(25), 5520–5525 (2008).  https://doi.org/10.1016/j.polymer.2008.09.067CrossRefGoogle Scholar
  12. 12.
    Siqueira, J.R., Gasparotto, L.H., Crespilho, F.N., Carvalho, A.J., Zucolotto, V., Oliveira, O.N.: Physicochemical properties and sensing ability of metallophthalocyanines/chitosan nanocomposites. J. Phys. Chem. B 110(45), 22690–22694 (2006).  https://doi.org/10.1021/jp0649089CrossRefGoogle Scholar
  13. 13.
    Jang, S.-D., Kim, J.-H., Zhijiang, C., Kim, J.: The effect of chitosan concentration on the electrical property of chitosan-blended cellulose electroactive paper. Smart Mater. Struct. 18(1), 015003 (5 pp.) (2009).  https://doi.org/10.1088/0964-1726/18/1/015003
  14. 14.
    Jeon, J.H., Cheedarala, R.K., Kee, C.D., Oh, I.K.: Dry-type artificial muscles based on pendent sulfonated chitosan and functionalized graphene oxide for greatly enhanced ionic interactions and mechanical stiffness. Adv. Funct. Mater. 23(48), 6007–6018 (2013).  https://doi.org/10.1002/adfm.201203550CrossRefGoogle Scholar
  15. 15.
    Kim, J., Yun, S.: Discovery of cellulose as a smart material. Macromolecules 39, 4202–4206 (2006).  https://doi.org/10.1021/ma060261eCrossRefGoogle Scholar
  16. 16.
    Sabo, R.C., Elhajjar, R.F., Clemons, C.M., Pillai, K.M.: Characterization and Processing of nanocellulose thermosetting composites. In: Pandey, J., Takagi, H., Nakagaito, A., Kim, H.J. (eds.) Handbook of Polymer Nanocomposites. Processing, Performance and Application, Volume C: Polymer Nanocomposites of Cellulose Nanoparticles, pp. 265–295. Springer, Berlin, Heidelberg (2015).  https://doi.org/10.1007/978-3-642-45232-1_64
  17. 17.
    Farid, M., Zhao, G., Khuong, T.L., Sun, Z.Z., Ur, Rehman N., Rizwan, M.: Biomimetic applications of ionic polymer metal composites (IPMC) actuators-a critical review. J. Biomim. Biomater. Biomed. Eng. 20, 1–10 (2014).  https://doi.org/10.4028/www.scientific.net/JBBBE.20.1CrossRefGoogle Scholar
  18. 18.
    Gross, J.H.: Liquid injection field desorption/ionization-mass spectrometry of ionic liquids. J. Am. Soc. Mass Spectrom. 18(12), 2254–2262 (2007).  https://doi.org/10.1016/j.jasms.2007.09.019CrossRefGoogle Scholar
  19. 19.
    Jastorff, B., Störmann, R., Ranke, J., Mölter, K., Stock, F., Oberheitmann, B., Hoffmann, W., Hoffmann, J., Nüchter, M., Ondruschka, B., Filser, J.: How hazardous are ionic liquids? Structure-activity relationships and biological testing as important elements for sustainability evaluation. Green Chem. 5, 136–142 (2003).  https://doi.org/10.1039/B211971dCrossRefGoogle Scholar
  20. 20.
    Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D.: Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002).  https://doi.org/10.1039/B211971DCrossRefGoogle Scholar
  21. 21.
    Kim, K.B., Kim, J.: Fabrication and characterization of electro-active cellulose films regenerated by using 1-butyl-3-methylimidazolium chloride ionic liquid. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. 227, 2665–2670 (2013).  https://doi.org/10.1177/0954406213478707CrossRefGoogle Scholar
  22. 22.
    Edgar, K.J., Buchanan, C.M., Debenham, J.S., Rundquist, P.A., Seiler, B.D., Shelton, M.C., Tindall, D.: Advances in cellulose ester performance and application. Prog. Polym. Sci. 26(9), 1605–1688 (2001).  https://doi.org/10.1016/S0079-6700(01)00027-2CrossRefGoogle Scholar
  23. 23.
    Vidal, F., Plesse, C., Teyssié, D., Chevrot, C.: Long-life air working conducting semi-IPN/ionic liquid based actuator. Synth. Met. 142(1), 287–291 (2004).  https://doi.org/10.1016/j.synthmet.2003.10.005CrossRefGoogle Scholar
  24. 24.
    Vidal, F., Plesse, C., Randriamahazaka, H., Teyssie, D., Chevrot, C.: Long-life air working semi-IPN/ionic liquid: new precursor of artificial muscles. Mol. Cryst. Liq. Cryst. 448, 95/[697]–102/[704] (2006).  https://doi.org/10.1080/15421400500377453
  25. 25.
    Ozdemir, O., Karakuzu, R., Sarikanat, M., Seki, Y., Akar, E., Cetin, L., Yilmaz, O.C., Sever, K., Sen, I., Gurses, B.O.: Improvement of the electrochemical performance of carboxymethylcellulose-based actuators by graphene nanoplatelet loading. Cellulose 22, 3251–3260 (2015).  https://doi.org/10.1007/s10570-015-0702-3CrossRefGoogle Scholar
  26. 26.
    Murphy, E.B., Wudl, F.: The world of smart healable materials. Prog. Polym. Si 35, 223–251 (2010).  https://doi.org/10.1016/j.progpolymsci.2009.10.006CrossRefGoogle Scholar
  27. 27.
    Qiu, X.Y., Hu, S.W.: “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6, 738–781 (2013).  https://doi.org/10.3390/Ma6030738CrossRefGoogle Scholar
  28. 28.
    Sen, I., Seki, Y., Sarikanat, M., Cetin, L., Gurses, B.O., Ozdemir, O., Yilmaz, O.C., Sever, K., Akar, E., Mermer, O.: Electroactive behavior of graphene nanoplatelets loaded cellulose composite actuators. Compos. Part B 69, 369–377 (2015).  https://doi.org/10.1016/j.compositesb.2014.10.016
  29. 29.
    Cao, Y., Wu, J., Zhang, J., Li, H.Q., Zhang, Y., He, J.S.: Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem. Eng. J. 147, 13–21 (2009).  https://doi.org/10.1016/j.cej.2008.11.011CrossRefGoogle Scholar
  30. 30.
    Zhu, S., Wu, Y., Chen, Q., Yu, Z., Wang, C., Jin, S., Ding, Y., Wu, G.: Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem. 8, 325–327 (2006).  https://doi.org/10.1039/B601395CCrossRefGoogle Scholar
  31. 31.
    Zhang, H., Wu, J., Zhang, J., He, J.: 1-Alkyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatezing solvent for cellulose. Macromolecules 30(20), 8272–8277 (2005).  https://doi.org/10.1021/ma0505676CrossRefGoogle Scholar
  32. 32.
    Akar, E., Seki, Y., Ozdemir, O., Sen, I., Sarikanat, M., Gurses, B.O., Yilmaz, O.C., Cetin, L., Sever, K.: Electromechanical characterization of multilayer graphene-reinforced cellulose composite containing 1-ethyl-3-methylimidazolium diethylphosphonate ionic liquid. Sci. Eng. Compos. Mater. 24(2), 289–295 (2015).  https://doi.org/10.1515/secm-2015-0038CrossRefGoogle Scholar
  33. 33.
    Stankovich, S., Dikin, D.A., Domment, G.H.B., Kohlhaas, K.M., Zimmery, E.J., Stach, E.A., Piner, R.D., Nguyen, S.B.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRefGoogle Scholar
  34. 34.
    Eda, G., Chhowalla, M.: Graphene-based composite thin films for electronics. Nano Lett. 9(2), 814–818 (2009).  https://doi.org/10.1021/nl8035367CrossRefGoogle Scholar
  35. 35.
    Ozdemir, O., Karakuzu, R., Sarikanat, M., Akar, E., Seki, Y., Cetin, L., Sen, I., Gurses, B.O., Yilmaz, O.C., Sever, K., Mermer, O.: Effects of PEG loading on electromechanical behavior of cellulose-based electroactive composite. Cellulose 22, 1873–1881 (2015).  https://doi.org/10.1007/s10570-015-0581-7CrossRefGoogle Scholar
  36. 36.
    Song, W., Yang, L., Sun, Z., Li, F., Du, S.: Study on the actuation enhancement for ionic-induced IL-cellulose based biocompatible composite actuators by glycerol plasticization treatment method. Cellulose 25(5), 2885–2889 (2018).  https://doi.org/10.1007/s10570-018-1783-6CrossRefGoogle Scholar
  37. 37.
    Wang, F., Jeon, J.H., Park, S., Kee, C.D., Kim, S.J., Oh, I.K.: Soft biomolecule actuator based on highly functionalized bacterial cellulose nano-fiber network with carboxylic acid groups. Soft Matter 12, 246–254 (2012).  https://doi.org/10.1039/C5SM00707KCrossRefGoogle Scholar
  38. 38.
    Cheedarala, R.V., Jeon, J.H., Kee, C.D., Oh, I.K.: Bio‐inspired all‐organic soft actuator based on a π–π stacked 3D ionic network membrane and ultra‐fast solution processing. Adv. Funct. Mater. 24, 6005–6015 (2014).  https://doi.org/10.1002/adfm.201401136
  39. 39.
    Greco, F., Zucca, A., Taccola, S., Menciassi, A., Fujie, T., Haniuda, H., Takeoka, S., Dario, P., Mattoli, V.: Ultra-thin conductive free-standing PEDOT/PSS nanofilms. Soft Matter 7, 10642–10650 (2011).  https://doi.org/10.1039/C1SM06174GCrossRefGoogle Scholar
  40. 40.
    Greco, F., Domenici, V., Desii, A., Sinibaldi, E., Zalar, B., Mazzolai, B., Mattoli, V.: Liquid single crystal elastomer/conducting polymer bilayer composite actuator: modelling and experiments. Soft Matter 9, 11405–11416 (2013).  https://doi.org/10.1039/C3SM51153GCrossRefGoogle Scholar
  41. 41.
    Okuzali, H., Tagaki, S., Hishiki, F., Tanigawa, R.: Ionic liquid/polyurethane/PEDOT:PSS composites for electro-active polymer actuators. Sens. Actuators B 194, 59–63 (2014).  https://doi.org/10.1016/j.snb.2013.12.059CrossRefGoogle Scholar
  42. 42.
    Haldorai, Y., Shim, J.J.: Chemo-responsive bilayer actuator film: fabrication, characterization and actuator response. New J. Chem. 38, 2653–2659 (2014).  https://doi.org/10.1039/c4nj00014e
  43. 43.
    Seiffert, S., Oppermann, W., Saalwachter, K.: Hydrogel formation by photocrosslinking of dimethylmaleimide functionalized polyacrylamide polymer 48, 5599–5611 (2007).  https://doi.org/10.1016/j.polymer.2007.07.013CrossRefGoogle Scholar
  44. 44.
    Kim, J., Wang, N., Chen, Y., Lee, S.K., Yun, G.Y.: Electroactive-paper actuator made with cellulose/NaOH/urea and sodium alginate. Cellulose 14, 217–223 (2007).  https://doi.org/10.1007/s10570-007-9111-6CrossRefGoogle Scholar
  45. 45.
    Kim, J., Yun, S., Mahadeva, S.K., Yun, K., Yang, S.Y., Maniruzzaman, M.: Paper actuators made with cellulose and hybrid materials. Sensors 10, 1473–1485 (2010).  https://doi.org/10.3390/s100301473CrossRefGoogle Scholar
  46. 46.
    Mahadeva, S.K., Yi, C., Kim, J.: Effect of room temperature ionic liquids adsorption on electromechanical behaviour of cellulose electro-active paper. Macromol. Res. 17(2), 116–120 (2009)CrossRefGoogle Scholar
  47. 47.
    Wang, N., Chen, Y., Kim, J.: Electroactive paper actuator made with chitosan-cellulose films: effect of acetic acid. Macromol. Mater. Eng. 292, 748–753 (2007)CrossRefGoogle Scholar
  48. 48.
    Kim, J., Wang, N., Chen, Y.: Effect of chitosan and ions on actuation behaviour of cellulose-chitosan laminated films as electro-active paper actuators. Cellulose 14, 439–445 (2007)CrossRefGoogle Scholar
  49. 49.
    Kim, J., Seo, Y.B.: Electro-active paper actuators. Smart Mater. Struct. 11, 355–360 (2002)CrossRefGoogle Scholar
  50. 50.
    Sun, Z., Zhao, G., Song, W.: A naturally crosslinked chitosan based ionic actuator with cathode deflection phenomenon. Cellulose 24(2), 441–445 (2016).  https://doi.org/10.1007/s10570-016-1161-1CrossRefGoogle Scholar
  51. 51.
    Dos Santos, D.S., Riul, A., Malmegrum, R.R.: A layer-by-layer film of chitosan in a taste sensor application. Macromol. Biosci. 3(10), 591–595 (2003)CrossRefGoogle Scholar
  52. 52.
    Zolfagharian, A., Kouzani, A.Z., Khoo, S.Y., Nasri-Nasrabadi, B., Kaynak, A.: Development and analysis of a 3D printed hydrogel soft actuator. Sens. Actuators A 265, 94–101 (2017).  https://doi.org/10.1016/j.sna.2017.08.038CrossRefGoogle Scholar
  53. 53.
    Shahinpoor, M.: Chitosan/IPMC artificial muscle. Adv. Sci. Technol. 79, 32–40 (2013)CrossRefGoogle Scholar
  54. 54.
    Muralidharan, M.N., Shinu, K.P., Seema, A.: Optically triggered actuation in chitosan/reduced graphene oxide nanocomposites. Carbohydr. Polym. 144, 115–121 (2016).  https://doi.org/10.1016/j.carbpol.2016.02.047CrossRefGoogle Scholar
  55. 55.
    Lu, L.H., Chen, W.: Large-scale aligned carbon nanotubes from their purified highly concentrated suspension. ACS Nano 4(2), 1042–1048 (2010).  https://doi.org/10.1021/nn901326mCrossRefGoogle Scholar
  56. 56.
    Harrison, B.S., Atala, A.: Carbon nanotube applications for tissue engineering. Biomaterials 28(2), 344–353 (2007).  https://doi.org/10.1016/j.biomaterials.2006.07.044CrossRefGoogle Scholar
  57. 57.
    Li, J., Ma, W., Song, L., Niu, Z., Cai, L., Zeng, Q., Zhang, X., Dong, H., Zhao, D., Zhoud, W., Xie, S.: Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett. 11, 4636–4641 (2011).  https://doi.org/10.1021/n120132mCrossRefGoogle Scholar
  58. 58.
    Zhao, G., Yang, J., Wang, Y., Zhao, H., Wang, Z.: Preparation and electromechanical properties of the chitosan gel polymer actuator based on heat treating. Sens. Actuators 279, 481–492 (2018).  https://doi.org/10.1016/j.sna.2018.06.036CrossRefGoogle Scholar
  59. 59.
    Zhao, G., Sun, Z., Wang, J., Xu, Y., Li, L., Ge, Y.: Electrochemical properties of a highly biocompatible chitosan polymer actuator based on a different nanocarbon/ionic liquid electrode. Polym. Compos. (2015).  https://doi.org/10.1002/pc.23822
  60. 60.
    Sun, Z., Zhao, G., Song, W.L., Wang, J., Haq, M.U.: Investigation into electromechanical properties of biocompatible chitosan-based ionic actuator. Exp. Mech. 58(1), 99–109 (2017)Google Scholar
  61. 61.
    Di Martino, A., Sittinger, M., Risbud, M.V.: Chitosan: a versatile biopolymer for orthopedic tissue-engineering. Biomaterials 26(3), 5983–5990 (2005)CrossRefGoogle Scholar
  62. 62.
    Neto, G.T., Dantas, T.N.C., Fonseca, J.L.C.: Permeability studies in chitosan membranes. Effects of crosslinking and poly (ethylene oxide) addition. Carbohyd. Res. 340(17), 2630–2636 (2005)Google Scholar
  63. 63.
    Altinkaya, E., Seki, Y., Yilmaz, O.C., Cetin, L., Ozdemir, O., Sen, I., Sever, K., Gurses, B.O., Sarikanat, M.: Electromechanical performance of chitosan-based composite electroactive actuators. Compos. Sci. Technol. 129, 108–115 (2016).  https://doi.org/10.1016/j.compscitech.2016.04.019CrossRefGoogle Scholar
  64. 64.
    Yeng, C.M., Husseinsyah, S., Ting, S.S.: Effect of cross-linked agent on tensile properties of chitosan/corn cob biocomposite films. Polym. Plast Technol. 54(3), 270–275Google Scholar
  65. 65.
    Altinkaya, E., Seki, Y., Cetin, L., Gurses, B.O., Ozdemir, O., Sever, K., Sarikanat, M.: Characterization and analysis of motion mechanism of electroactive chitosan-based actuator. Carbohyd. Polym. 181, 404–411 (2018).  https://doi.org/10.1016/j.carbpol.2017.08.113CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Chemistry Timisoara of Romanian AcademyTimisoaraRomania
  2. 2.“Petru Poni” Institute of Macromolecular ChemistryIasiRomania
  3. 3.Faculty of Industrial Chemistry and Environmental EngineeringPolitehnica University TimisoaraTimisoaraRomania

Personalised recommendations