Can We Fabricate That Fibre?

  • Yvonne M. StokesEmail author
  • Darren G. Crowdy
  • Heike Ebendorff-Heidepriem
  • Peter Buchak
  • Michael J. Chen
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 34)


This paper reviews the development of an efficient mathematical model for the drawing of optical fibres using extensional flow theory which is applicable for fibres of arbitrary geometry. The model is comprised of a 1D axial stretching problem describing the change in area of the cross-section from preform to fibre coupled with a 2D cross-plane problem describing the evolution of a cross-section. The solution of the axial stretching problem may be written in an exact form while the cross-plane problem must, in general, be solved numerically. The model may be used to solve forward and inverse problems and gives results that compare well with experiments.


Extensional flow Free-boundary problem Optical fibres 


  1. 1.
    Buchak, P., Crowdy, D.G., Stokes, Y.M., Ebendorff-Heidepriem, H.: Elliptical pore regularisation of the inverse problem for microstructured optical fibre fabrication. J. Fluid Mech. 778, 5–38 (2015). Scholar
  2. 2.
    Chen, M.J., Stokes, Y.M., Buchak, P., Crowdy, D.G., Ebendorff-Heidepriem, H.: Microstructured optical fibre drawing with active channel pressurisation. J. Fluid Mech. 783, 137–165 (2015). Scholar
  3. 3.
    Chen, M.J., Stokes, Y.M., Buchak, P., Crowdy, D.G., Ebendorff-Heidepriem, H.: Asymptotic modelling of a six-hole MOF. J. Lightwave Tech. 34, 5651–5656 (2016). Scholar
  4. 4.
    Crowdy, D.G.: An elliptical-pore model of late-stage planar viscous sintering. J. Fluid Mech. 501, 251–277 (2004). Scholar
  5. 5.
    Cummings, L.J., Howell, P.D.: On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity. J. Fluid Mech. 389, 361–389 (1999). Scholar
  6. 6.
    Dewynne, J.N., Ockendon, J.R., Wilmott, P.: A systematic derivation of the leading-order equations for extensional flows in slender geometries. J. Fluid Mech. 244, 323–338 (1992). Scholar
  7. 7.
    Dewynne, J.N., Howell, P.D., Wilmott, P.: Slender viscous fibres with inertia and gravity. Q. J. Mech. Appl. Math. 47, 541–555 (1994). Scholar
  8. 8.
    Fitt, A.D., Furusawa, K., Monro, T.M., Please, C.P., Richardson, D.A.: The mathematical modelling of capillary drawing for holey fibre manufacture. J. Eng. Maths 43, 201–227 (2002). Scholar
  9. 9.
    Griffiths, I.M., Howell, P.D.: Mathematical modelling of non-axisymmetric capillary tube drawing. J. Fluid Mech. 605, 181–206 (2008). Scholar
  10. 10.
    Institute for Photonics and Advanced Sensing: Research themes (2017)., viewed 19 November 2017
  11. 11.
    Knight, J.C.: Photonic crystal fibres. Nature 424, 847–851 (2003). Scholar
  12. 12.
    Luzi, G., Epple, P., Scharrer, M., Fujimoto, K., Rauh, C., Delgado, A.: Numerical solution and experimental validation of the drawing process of six-hole optical fibers including the effects of inner pressure and surface tension. J. Lightwave Technol. 30, 1306–1311 (2012). Scholar
  13. 13.
    Matovich, M.A., Pearson, J.R.A.: Spinning a molten threadline; steady-state isothermal viscous flows. Ind. Eng. Chem. Fund. 8, 512–520 (1969). Scholar
  14. 14.
    Pearson, J.R.A., Petrie, C.J.S.: The flow of a tubular film. Part 2 Interpretation of the model and discussion of solutions. J. Fluid Mech. 42, 609–625 (1970).
  15. 15.
    Stokes, Y.M., Buchak, P., Crowdy, D.G., Ebendorff-Heidepriem, H.: Drawing of microstructured fibres: circular and noncircular tubes. J. Fluid Mech. 755, 176–203 (2014). Scholar
  16. 16.
    Xue, S.C., Tanner, R.I., Barton, G.W., Lwin, R., Large, M.C.J., Poladian, L.: Fabrication of microstructured optical fibres - part I: problem formulation and numerical modelling of transient draw process. J. Lightwave Technol. 23, 2245–2254 (2015). Scholar
  17. 17.
    Xue, S.C., Tanner, R.I., Barton, G.W., Lwin, R., Large, M.C.J., Poladian, L.: Fabrication of microstructured optical fibres - part II: numerical modelling of steady-state draw process. J. Lightwave Technol. 23, 2255–2266 (2015). Scholar
  18. 18.
    Yarin, A.L.: Surface-tension-driven flows at low Reynolds number arising in optoelectronic technology. J. Fluid Mech. 286, 173–200 (1995). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yvonne M. Stokes
    • 1
    Email author
  • Darren G. Crowdy
    • 2
  • Heike Ebendorff-Heidepriem
    • 3
  • Peter Buchak
    • 4
  • Michael J. Chen
    • 1
  1. 1.School of Mathematical SciencesThe University of AdelaideAdelaideAustralia
  2. 2.Department of MathematicsImperial College LondonLondonUK
  3. 3.Institute for Photonics and Advanced Sensing, School of Chemistry and PhysicsThe University of AdelaideAdelaideAustralia
  4. 4.LowReTech LLCPhiladelphiaUSA

Personalised recommendations