Advertisement

Can We Fabricate That Fibre?

  • Yvonne M. StokesEmail author
  • Darren G. Crowdy
  • Heike Ebendorff-Heidepriem
  • Peter Buchak
  • Michael J. Chen
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 34)

Abstract

This paper reviews the development of an efficient mathematical model for the drawing of optical fibres using extensional flow theory which is applicable for fibres of arbitrary geometry. The model is comprised of a 1D axial stretching problem describing the change in area of the cross-section from preform to fibre coupled with a 2D cross-plane problem describing the evolution of a cross-section. The solution of the axial stretching problem may be written in an exact form while the cross-plane problem must, in general, be solved numerically. The model may be used to solve forward and inverse problems and gives results that compare well with experiments.

Keywords

Extensional flow Free-boundary problem Optical fibres 

References

  1. 1.
    Buchak, P., Crowdy, D.G., Stokes, Y.M., Ebendorff-Heidepriem, H.: Elliptical pore regularisation of the inverse problem for microstructured optical fibre fabrication. J. Fluid Mech. 778, 5–38 (2015).  https://doi.org/10.1017/jfm.2015.337CrossRefzbMATHGoogle Scholar
  2. 2.
    Chen, M.J., Stokes, Y.M., Buchak, P., Crowdy, D.G., Ebendorff-Heidepriem, H.: Microstructured optical fibre drawing with active channel pressurisation. J. Fluid Mech. 783, 137–165 (2015).  https://doi.org/10.1017/jfm.2015.570MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, M.J., Stokes, Y.M., Buchak, P., Crowdy, D.G., Ebendorff-Heidepriem, H.: Asymptotic modelling of a six-hole MOF. J. Lightwave Tech. 34, 5651–5656 (2016).  https://doi.org/10.1109/JLT.2016.2628438CrossRefGoogle Scholar
  4. 4.
    Crowdy, D.G.: An elliptical-pore model of late-stage planar viscous sintering. J. Fluid Mech. 501, 251–277 (2004).  https://doi.org/10.1017/S0022112003007559MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cummings, L.J., Howell, P.D.: On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity. J. Fluid Mech. 389, 361–389 (1999).  https://doi.org/10.1017/S0022112099005030MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dewynne, J.N., Ockendon, J.R., Wilmott, P.: A systematic derivation of the leading-order equations for extensional flows in slender geometries. J. Fluid Mech. 244, 323–338 (1992).  https://doi.org/10.1017/S0022112092003094MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dewynne, J.N., Howell, P.D., Wilmott, P.: Slender viscous fibres with inertia and gravity. Q. J. Mech. Appl. Math. 47, 541–555 (1994).  https://doi.org/10.1093/qjmam/47.4.541MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fitt, A.D., Furusawa, K., Monro, T.M., Please, C.P., Richardson, D.A.: The mathematical modelling of capillary drawing for holey fibre manufacture. J. Eng. Maths 43, 201–227 (2002).  https://doi.org/10.1023/A:1020328606157MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Griffiths, I.M., Howell, P.D.: Mathematical modelling of non-axisymmetric capillary tube drawing. J. Fluid Mech. 605, 181–206 (2008).  https://doi.org/10.1017/S002211200800147XMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Institute for Photonics and Advanced Sensing: Research themes (2017). https://www.adelaide.edu.au/ipas/research/, viewed 19 November 2017
  11. 11.
    Knight, J.C.: Photonic crystal fibres. Nature 424, 847–851 (2003).  https://doi.org/10.1038/nature01940CrossRefGoogle Scholar
  12. 12.
    Luzi, G., Epple, P., Scharrer, M., Fujimoto, K., Rauh, C., Delgado, A.: Numerical solution and experimental validation of the drawing process of six-hole optical fibers including the effects of inner pressure and surface tension. J. Lightwave Technol. 30, 1306–1311 (2012).  https://doi.org/10.1109/JLT.2012.2185486CrossRefGoogle Scholar
  13. 13.
    Matovich, M.A., Pearson, J.R.A.: Spinning a molten threadline; steady-state isothermal viscous flows. Ind. Eng. Chem. Fund. 8, 512–520 (1969).  https://doi.org/10.1021/i160031a023CrossRefGoogle Scholar
  14. 14.
    Pearson, J.R.A., Petrie, C.J.S.: The flow of a tubular film. Part 2 Interpretation of the model and discussion of solutions. J. Fluid Mech. 42, 609–625 (1970).  https://doi.org/10.1017/S0022112070001507
  15. 15.
    Stokes, Y.M., Buchak, P., Crowdy, D.G., Ebendorff-Heidepriem, H.: Drawing of microstructured fibres: circular and noncircular tubes. J. Fluid Mech. 755, 176–203 (2014).  https://doi.org/10.1017/jfm.2014.408MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Xue, S.C., Tanner, R.I., Barton, G.W., Lwin, R., Large, M.C.J., Poladian, L.: Fabrication of microstructured optical fibres - part I: problem formulation and numerical modelling of transient draw process. J. Lightwave Technol. 23, 2245–2254 (2015).  https://doi.org/10.1109/JLT.2005.850055CrossRefGoogle Scholar
  17. 17.
    Xue, S.C., Tanner, R.I., Barton, G.W., Lwin, R., Large, M.C.J., Poladian, L.: Fabrication of microstructured optical fibres - part II: numerical modelling of steady-state draw process. J. Lightwave Technol. 23, 2255–2266 (2015).  https://doi.org/10.1109/JLT.2005.850058CrossRefGoogle Scholar
  18. 18.
    Yarin, A.L.: Surface-tension-driven flows at low Reynolds number arising in optoelectronic technology. J. Fluid Mech. 286, 173–200 (1995).  https://doi.org/10.1017/S0022112095000693CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yvonne M. Stokes
    • 1
    Email author
  • Darren G. Crowdy
    • 2
  • Heike Ebendorff-Heidepriem
    • 3
  • Peter Buchak
    • 4
  • Michael J. Chen
    • 1
  1. 1.School of Mathematical SciencesThe University of AdelaideAdelaideAustralia
  2. 2.Department of MathematicsImperial College LondonLondonUK
  3. 3.Institute for Photonics and Advanced Sensing, School of Chemistry and PhysicsThe University of AdelaideAdelaideAustralia
  4. 4.LowReTech LLCPhiladelphiaUSA

Personalised recommendations