Learning Consistent Tree-Augmented Dynamic Bayesian Networks

  • Margarida Sousa
  • Alexandra M. CarvalhoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11331)


Dynamic Bayesian networks (DBNs) offer an approach that allows for causal and temporal dependencies between random variables repeatedly measured over time. For this reason, they have been used in several domains such as medical prognostic predictions, meteorology and econometrics. Learning the intra-slice dependencies is, however, most of the times neglected. This is due to the inherent difficulty in dealing with cyclic dependencies. We propose an algorithm for learning optimal DBNs consistent with the tree-augmented network (tDBN). This algorithm uses the topological order induced by the tDBN to increase its search space exponentially while keeping the time complexity polynomial.


  1. 1.
    Carvalho, A.M.: Scoring functions for learning Bayesian networks. INESC-ID Technical Report, 12 (2009)Google Scholar
  2. 2.
    Carvalho, A.M., Adão, P., Mateus, P.: Efficient approximation of the conditional relative entropy with applications to discriminative learning of Bayesian network classifiers. Entropy 15(7), 2716–2735 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Carvalho, A.M., Adão, P., Mateus, P.: Hybrid learning of Bayesian multinets for binary classification. Pattern Recogn. 47(10), 3438–3450 (2014)zbMATHCrossRefGoogle Scholar
  4. 4.
    Carvalho, A.M., Oliveira, A.L.: Learning Bayesian networks consistent with the optimal branching. In: Proceedings of the ICMLA 2007, pp. 369–374. IEEE (2007)Google Scholar
  5. 5.
    Carvalho, A.M., Roos, T., Oliveira, A.L., Myllymäki, P.: Discriminative learning of Bayesian networks via factorized conditional log-likelihood. J. Mach. Learn. Res. 12, 2181–2210 (2011)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Charniak, E.: Bayesian networks without tears. AI Mag. 12(4), 50–63 (1991)Google Scholar
  7. 7.
    Chickering, D.M.: Learning Bayesian networks is NP-complete. In: Fisher, D., Lenz, H.J. (eds.) Learning from Data: Artificial Intelligence and Statistics, vol. 112, pp. 121–130. Springer, New York (1996). Scholar
  8. 8.
    Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Trans. Inf. Theor. 14(3), 462–467 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian belief networks. Artif. Intell. 42(2–3), 393–405 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4), 309–347 (1992)zbMATHGoogle Scholar
  11. 11.
    Dagum, P., Luby, M.: Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artif. Intell. 60(1), 141–153 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Dojer, N.: Learning Bayesian networks does not have to be NP-hard. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 305–314. Springer, Heidelberg (2006). Scholar
  13. 13.
    Edmonds, J.: Optimum branchings. Math. Decis. Sci. Part 1, 335–345 (1968)zbMATHGoogle Scholar
  14. 14.
    Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Proceedings UAI 1998, pp. 139–147 (1998)Google Scholar
  15. 15.
    Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995)zbMATHGoogle Scholar
  16. 16.
    Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT press, Cambridge (2009)zbMATHGoogle Scholar
  17. 17.
    Monteiro, J.L., Vinga, S., Carvalho, A.M.: Polynomial-time algorithm for learning optimal tree-augmented dynamic Bayesian networks. In: Proceedings of the UAI 2015, pp. 622–631 (2015)Google Scholar
  18. 18.
    Murphy, K.P.: The Bayes net toolbox for MATLAB. Comput. Sci. Stat. 33, 2001 (2001)Google Scholar
  19. 19.
    Murphy, K.P., Russell, S.: Dynamic Bayesian Networks: Representation, Inference and Learning (2002)Google Scholar
  20. 20.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Burlington (2014)zbMATHGoogle Scholar
  21. 21.
    Rissanen, J.: Minimum Description Length Principle. Wiley, Hoboken (1985)Google Scholar
  22. 22.
    Vinh, N.X., Chetty, M., Coppel, R., Wangikar, P.P.: Polynomial time algorithm for learning globally optimal dynamic Bayesian network. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7064, pp. 719–729. Springer, Heidelberg (2011). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto de TelecomunicaçõesLisbonPortugal
  2. 2.Instituto Superior TécnicoUniversity of LisbonLisbonPortugal

Personalised recommendations