Skip to main content

In-Memory Deep Learning Computations on GPUs for Prediction of Road Traffic Incidents Using Big Data Fusion

  • Chapter
  • First Online:
Smart Infrastructure and Applications

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

Abstract

A staggering 1.25 million people die and up to 50 million people suffer injuries annually due to road traffic crashes around the world, causing great socio-economic and environmental damages. Road collisions are a major cause of road congestion. The cost of congestion to the US economy, alone, exceeded 305 billion USD in 2017. Smart infrastructure developments have accelerated the pace of technological advancements and the penetration of these technologies to all spheres of everyday life including transportation. The use of GPS devices to collect data, image processing and artificial intelligence (AI) for traffic analysis, and autonomous driving are but a few examples. This paper brings together transport big data, deep learning, in-memory computing, and GPU computing to predict traffic incidents on the road. Three different kinds of datasets—road traffic, vehicle detector station (VDS), and incident data—are combined together to predict road traffic incidents. The data is acquired from the California Department of Transportation (Caltrans) Performance Measurement System (PeMS). We have analyzed over 10 years of road traffic data. This work-in-progress paper reports incident prediction results using 3 months’ data, September to November 2017. The data fusion methodology is explained in detail along with the algorithms. The results for various configurations of deep convolution neural networks are given. Conclusions are drawn from the current status of the results and ideas for future improvements are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization: Road Traffic Injuries. http://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries (2018). Accessed 27 Nov 2018

  2. World Bank: The High Toll of Traffic Injuries: Unacceptable and Preventable. World Bank (2017). http://www.worldbank.org/en/programs/global-road-safety-facility/publication/the-high-toll-of-traffic-injuries-unacceptable-and-preventable

  3. Cookson, G.: INRIX Global Traffic Scorecard. INRIX Research (2018). http://inrix.com/scorecard/

  4. Schrank, D., Eisele, B., Lomax, T.: TTI’s 2012 urban mobility report. Texas A&M Transportation Institute. The Texas A&M University System 4 (2012)

    Google Scholar 

  5. El Hatri, C., Boumhidi, J.: Traffic management model for vehicle re-routing and traffic light control based on multi-objective particle swarm optimization. Intell. Decis. Technol. 11(2), 199–208 (2017)

    Article  Google Scholar 

  6. Kim, H.J., Hoi-Kyun, C.: A comparative analysis of incident service time on urban freeways. IATSS Res. 25(1), 62–72 (2001)

    Article  Google Scholar 

  7. Skabardonis, A., Varaiya, P., Petty, K.: Measuring recurrent and nonrecurrent traffic congestion. Transp. Res. Rec. J. Transp. Res. Board 1856(1), 118–124 (2003)

    Article  Google Scholar 

  8. Ghosh, I., Savolainen, P.T., Gates, T.J.: Examination of factors affecting freeway incident clearance times: a comparison of the generalized f model and several alternative nested models. J. Adv. Transp. 48(6), 471–485 (2014)

    Article  Google Scholar 

  9. Asakura, Y., Kusakabe, T., Nguyen, L.X., Ushiki, T.: Incident detection methods using probe vehicles with on-board gps equipment. Transp. Res. C Emerg. Technol. 81, 330–341 (2017)

    Article  Google Scholar 

  10. D’Andrea, E., Marcelloni, F.: Detection of traffic congestion and incidents from gps trace analysis. Expert Syst. Appl. 73, 43–56 (2017)

    Article  Google Scholar 

  11. Oskarbski, J., Zawisza, M., Żarski, K.: Automatic incident detection at intersections with use of telematics. Transp. Res. Procedia 14, 3466–3475 (2016)

    Article  Google Scholar 

  12. Ayres, G., Mehmood, R.: On discovering road traffic information using virtual reality simulations. In: 11th International Conference on Computer Modelling and Simulation, 2009. UKSIM’09, pp. 411–416. IEEE, Piscataway (2009)

    Google Scholar 

  13. Mehmood, R.: Towards understanding intercity traffic interdependencies. In: Proceedings of the 14th World Congress on Intelligent Transport Systems (ITS), held Beijing, October 2007 (2007)

    Google Scholar 

  14. Zhao, Z., Chen, W., Wu, X., Chen, P.C., Liu, J.: LSTM network: a deep learning approach for short-term traffic forecast. IET Intell. Transp. Syst. 11(2), 68–75 (2017)

    Article  Google Scholar 

  15. Fouladgar, M., Parchami, M., Elmasri, R., Ghaderi, A.: Scalable deep traffic flow neural networks for urban traffic congestion prediction. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2251–2258. IEEE, Piscataway (2017)

    Google Scholar 

  16. Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y., et al.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2015)

    Google Scholar 

  17. Jia, Y., Wu, J., Du, Y.: Traffic speed prediction using deep learning method. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 1217–1222. IEEE, Piscataway (2016)

    Google Scholar 

  18. Yu, R., Li, Y., Shahabi, C., Demiryurek, U., Liu, Y.: Deep learning: a generic approach for extreme condition traffic forecasting. In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 777–785. SIAM, Philadelphia (2017)

    Chapter  Google Scholar 

  19. Ma, X., Tao, Z., Wang, Y., Yu, H., Wang, Y.: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. C Emerg. Technol. 54, 187–197 (2015)

    Article  Google Scholar 

  20. El Hatri, C., Boumhidi, J.: Fuzzy deep learning based urban traffic incident detection. Cogn. Syst. Res. 50, 206–213 (2018)

    Article  Google Scholar 

  21. Sun, J., Sun, J.: A dynamic Bayesian network model for real-time crash prediction using traffic speed conditions data. Transp. Res. C Emerg. Technol. 54, 176–186 (2015)

    Article  Google Scholar 

  22. Ki, Y.K., Heo, N.W., Choi, J.W., Ahn, G.H., Park, K.S.: An incident detection algorithm using artificial neural networks and traffic information. In: Cybernetics & Informatics (K&I), 2018, pp. 1–5. IEEE, Piscataway (2018)

    Google Scholar 

  23. Agarwal, S., Kachroo, P., Regentova, E.: A hybrid model using logistic regression and wavelet transformation to detect traffic incidents. IATSS Res. 40(1), 56–63 (2016)

    Article  Google Scholar 

  24. Li, R., Pereira, F.C., Ben-Akiva, M.E.: Overview of traffic incident duration analysis and prediction. Eur. Transp. Res. Rev. 10(2), 22 (2018)

    Article  Google Scholar 

  25. Boyles, S., Fajardo, D., Waller, S.T.: A naive bayesian classifier for incident duration prediction. In: 86th Annual Meeting of the Transportation Research Board, Washington, DC, Citeseer (2007)

    Google Scholar 

  26. Nam, D., Mannering, F.: An exploratory hazard-based analysis of highway incident duration. Transp. Res. A Policy Pract. 34(2), 85–102 (2000)

    Article  Google Scholar 

  27. Lee, J.Y., Chung, J.H., Son, B.: Incident clearance time analysis for Korean freeways using structural equation model. In: Proceedings of the Eastern Asia Society for Transportation Studies (The 8th International Conference of Eastern Asia Society for Transportation Studies, 2009), vol. 7, pp. 360–360. Eastern Asia Society for Transportation Studies, Tokyo (2009)

    Google Scholar 

  28. Zhan, C., Gan, A., Hadi, M.: Prediction of lane clearance time of freeway incidents using the m5p tree algorithm. IEEE Trans. Intell. Transp. Syst. 12(4), 1549–1557 (2011)

    Article  Google Scholar 

  29. Vlahogianni, E.I., Karlaftis, M.G.: Fuzzy-entropy neural network freeway incident duration modeling with single and competing uncertainties. Comput. Aided Civ. Infrastruct. Eng. 28(6), 420–433 (2013)

    Article  Google Scholar 

  30. Hojati, A.T., Ferreira, L., Washington, S., Charles, P., Shobeirinejad, A.: Modelling total duration of traffic incidents including incident detection and recovery time. Accid. Anal. Prev. 71, 296–305 (2014)

    Article  Google Scholar 

  31. Pan, B., Demiryurek, U., Shahabi, C., Gupta, C.: Forecasting spatiotemporal impact of traffic incidents on road networks. In: 2013 IEEE 13th International Conference on Data Mining (ICDM), pp. 587–596. IEEE, Piscataway (2013)

    Google Scholar 

  32. Miller, M., Gupta, C.: Mining traffic incidents to forecast impact. In: Proceedings of the ACM SIGKDD International Workshop on Urban Computing, pp. 33–40. ACM, New York (2012)

    Google Scholar 

  33. Chung, Y., Recker, W.W.: A methodological approach for estimating temporal and spatial extent of delays caused by freeway accidents. IEEE Trans. Intell. Transp. Syst. 13(3), 1454–1461 (2012)

    Article  Google Scholar 

  34. Javid, R.J., Javid, R.J.: A framework for travel time variability analysis using urban traffic incident data. IATSS Res. 42(1), 30–38 (2018)

    Article  Google Scholar 

  35. Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.): Smart Societies, Infrastructure, Technologies and Applications. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST), vol. 224. Springer International Publishing, Cham (2018)

    Google Scholar 

  36. Tawalbeh, L., Basalamah, A., Mehmood, R., Tawalbeh, H.: Greener and smarter phones for future cities: characterizing the impact of gps signal strength on power consumption. IEEE Access 4, 858–868 (2016)

    Article  Google Scholar 

  37. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: UTiLearn: a personalised ubiquitous teaching and learning system for smart societies. IEEE Access 5, 2615–2635 (2017)

    Article  Google Scholar 

  38. Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: UbeHealth: a personalized ubiquitous cloud and edge-enabled networked healthcare system for smart cities. IEEE Access 6, 32258–32285 (2018)

    Article  Google Scholar 

  39. Büscher, M., Coulton, P., Efstratiou, C., Gellersen, H., Hemment, D., Mehmood, R., Sangiorgi, D.: Intelligent mobility systems: some socio-technical challenges and opportunities. In: International Conference on Communications Infrastructure. Systems and Applications in Europe, pp. 140–152. Springer, Berlin (2009)

    Google Scholar 

  40. Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing model. Procedia Comput. Sci. 64, 1107–1114 (2015). Elsevier

    Article  Google Scholar 

  41. Arfat, Y., Mehmood, R., Albeshri, A.: Parallel shortest path graph computations of united states road network data on apache spark. In: International Conference on Smart Cities, Infrastructure, Technologies and Applications, pp. 323–336. Springer, Cham (2017)

    Google Scholar 

  42. Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence of big data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manag. 37(1), 75–104 (2017)

    Article  Google Scholar 

  43. Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. J. Manuf. Technol. Manag. 22(6), 804–817 (2011)

    Article  Google Scholar 

  44. Aqib, M., Mehmood, R., Albeshri, A., Alzahrani, A.: Disaster management in smart cities by forecasting traffic plan using deep learning and gpus. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) International Conference on Smart Cities, Infrastructure, Technologies and Applications (SCITA 2017): Smart Societies, Infrastructure, Technologies and Applications, pp. 139–154. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  45. Alazawi, Z., Altowaijri, S., Mehmood, R., Abdljabar, M.B.: Intelligent disaster management system based on cloud-enabled vehicular networks. In: ITS Telecommunications (ITST), 2011 11th International Conference on, pp. 361–368. IEEE, Piscataway (2011)

    Google Scholar 

  46. Alazawi, Z., Abdljabar, M.B., Altowaijri, S., Vegni, A.M., Mehmood, R.: Icdms: an intelligent cloud based disaster management system for vehicular networks. In: International Workshop on Communication Technologies for Vehicles, pp. 40–56. Springer, Berlin (2012)

    Google Scholar 

  47. Alazawi, Z., Alani, O., Abdljabar, M.B., Altowaijri, S., Mehmood, R.: A smart disaster management system for future cities. In: Proceedings of the 2014 ACM International Workshop on Wireless and Mobile Technologies for Smart Cities, pp. 1–10. ACM, New York (2014)

    Google Scholar 

  48. Alazawi, Z., Alani, O., Abdljabar, M.B., Mehmood, R.: An intelligent disaster management system based evacuation strategies. In: Communication Systems, Networks & Digital Signal Processing (CSNDSP), 2014 9th International Symposium on, pp. 673–678. IEEE, Piscataway (2014)

    Google Scholar 

  49. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.: Enabling smarter societies through mobile big data fogs and clouds. Procedia Comput. Sci. 109, 1128–1133 (2017)

    Article  Google Scholar 

  50. Graham, G., Mehmood, R., Coles, E.: Exploring future cityscapes through urban logistics prototyping: a technical viewpoint. Supply Chain Manag. 20(3), 341–352 (2015)

    Article  Google Scholar 

  51. Mehmood, R., Nekovee, M.: Vehicular ad hoc and grid networks: discussion, design and evaluation. In: Proceedings of the 14th World Congress on Intelligent Transport Systems (ITS), held Beijing, October 2007 (2007)

    Google Scholar 

  52. Gillani, S., Shahzad, F., Qayyum, A., Mehmood, R.: A survey on security in vehicular ad hoc networks. In: International Workshop on Communication Technologies for Vehicles, pp. 59–74. Springer, Berlin (2013)

    Google Scholar 

  53. Alvi, A., Greaves, D., Mehmood, R.: Intra-vehicular verification and control: a two-pronged approach. In: 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), pp. 401–405. IEEE, Piscataway (2010)

    Google Scholar 

  54. Nabi, Z., Alvi, A., Mehmood, R.: Towards standardization of in-car sensors. In: International Workshop on Communication Technologies for Vehicles, pp. 216–223. Springer, Berlin (2011)

    Google Scholar 

  55. Alam, F., Mehmood, R., Katib, I.: D2TFRS: an object recognition method for autonomous vehicles based on RGB and spatial values of pixels. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, vol. 224, pp. 155–168. Springer, Cham (Nov 2018)

    Google Scholar 

  56. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C., Niculescu, M.: Increasing sustainability of road transport in European cities and metropolitan areas by facilitating autonomic road transport systems (ARTS). In: Wellnitz, J., Subic, A., Trufin, R. (eds.) Sustainable Automotive Technologies 2013, pp. 201–210. Springer International Publishing, Ingolstadt (2014)

    Chapter  Google Scholar 

  57. Schlingensiepen, J., Nemtanu, F., Mehmood, R., McCluskey, L.: Autonomic transport management systems-enabler for smart cities, personalized medicine, participation and industry grid/industry 4.0. In: Intelligent Transportation Systems–Problems and Perspectives, pp. 3–35. Springer, Cham (2016)

    Google Scholar 

  58. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C.: Framework for an autonomic transport system in smart cities. Cybern. Inf. Technol. 15(5), 50–62 (2015)

    Google Scholar 

  59. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation logistics and planning for smarter societies. Procedia Comput. Sci. 109, 1122–1127 (2017)

    Article  Google Scholar 

  60. Suma, S., Mehmood, R., Albeshri, A.: Automatic event detection in smart cities using big data analytics. In: International Conference on Smart Cities, Infrastructure, Technologies and Applications, pp. 111–122. Springer, Cham (2017)

    Google Scholar 

  61. Alomari, E., Mehmood, R.: Analysis of tweets in Arabic language for detection of road traffic conditions. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, vol. 224, pp. 98–110. Springer, Cham (Nov 2018)

    Google Scholar 

  62. Mehmood, R., Faisal, M.A., Altowaijri, S.: Future networked healthcare systems: a review and case study. In: Boucadair, M., Jacquenet, C. (eds.) Handbook of Research on Redesigning the Future of Internet Architectures, pp. 531–558. IGI Global, Hershey, PA (2015)

    Chapter  Google Scholar 

  63. Usman, S., Mehmood, R., Katib, I.: Big data and HPC convergence: the cutting edge and outlook. In: International Conference on Smart Cities, Infrastructure, Technologies and Applications (SCITA 2017). Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, vol. 224, pp. 11–26. Springer, Cham (Nov 2018)

    Google Scholar 

  64. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for visual understanding: a review. Neurocomputing 187, 27–48 (2016)

    Article  Google Scholar 

  65. Berkeley, U.: Caltrans (2005) freeway performance measurement system (PEMS) 5.4. pems. eecs. berkeley. edu/Public (2005). Accessed 30 June 2005

    Google Scholar 

  66. Aqib, M., Mehmood, R., Alzahrani, A., Albeshri, A.P: A smart disaster management system for future cities using deep learning, GPUs, and in-memory computing. In: Mehmood, R., See, S., Katib, I., Chlamtac, I. (eds.) Smart Infrastructure and Applications: Foundations for Smarter Cities and Societies. Springer (2019). https://doi.org/10.1007/978-3-030-13705-2_7

    Google Scholar 

  67. Hojati, A.T., Ferreira, L., Washington, S., Charles, P., Shobeirinejad, A.: Modelling the impact of traffic incidents on travel time reliability. Transp. Res. C Emerg. Technol. 65, 49–60 (2016)

    Article  Google Scholar 

  68. Park, H., Haghani, A.: Real-time prediction of secondary incident occurrences using vehicle probe data. Transp. Res. C Emerg. Technol. 70, 69–85 (2016)

    Article  Google Scholar 

  69. Paule, J.D.G., Sun, Y., Moshfeghi, Y.: On fine-grained geolocalisation of tweets and real-time traffic incident detection. Inf. Process. Manag. 56, 1119–1132 (2018)

    Article  Google Scholar 

  70. Zhang, Z., He, Q., Gao, J., Ni, M.: A deep learning approach for detecting traffic accidents from social media data. Transp. Res. C Emerg. Technol. 86, 580–596 (2018)

    Article  Google Scholar 

  71. Gu, Y., Qian, Z.S., Chen, F.: From twitter to detector: real-time traffic incident detection using social media data. Transp. Res. C Emerg. Technol. 67, 321–342 (2016)

    Article  Google Scholar 

  72. Gutiérrez, C., Figueiras, P., Oliveira, P., Costa, R., Jardim-Goncalves, R.: An approach for detecting traffic events using social media. In: Emerging Trends and Advanced Technologies for Computational Intelligence, pp. 61–81. Springer, Cham (2016)

    Chapter  Google Scholar 

  73. Nguyen, H., Liu, W., Rivera, P., Chen, F.: Trafficwatch: real-time traffic incident detection and monitoring using social media. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 540–551. Springer, Cham (2016)

    Chapter  Google Scholar 

  74. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge with thanks the technical and financial support from the Deanship of Scientific Research (DSR) at the King Abdulaziz University (KAU), Jeddah, Saudi Arabia, under the grant number G-673-793-38. The work carried out in this paper is supported by the High Performance Computing Center at the King Abdulaziz University, Jeddah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Mehmood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aqib, M., Mehmood, R., Alzahrani, A., Katib, I. (2020). In-Memory Deep Learning Computations on GPUs for Prediction of Road Traffic Incidents Using Big Data Fusion. In: Mehmood, R., See, S., Katib, I., Chlamtac, I. (eds) Smart Infrastructure and Applications. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-13705-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13705-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13704-5

  • Online ISBN: 978-3-030-13705-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics