Advertisement

HPC-Smart Infrastructures: A Review and Outlook on Performance Analysis Methods and Tools

  • Thaha MuhammedEmail author
  • Rashid Mehmood
  • Aiiad Albeshri
  • Fawaz Alsolami
Chapter
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

High-performance computing (HPC) plays a key role in driving innovations in health, economics, energy, transport, networks, and other smart-society infrastructures. HPC enables large-scale simulations and processing of big data related to smart societies to optimize their services. Driving high efficiency from shared-memory and distributed HPC systems have always been challenging; it has become essential as we move towards the exascale computing era. Therefore, the evaluation, analysis, and optimization of HPC applications and systems to improve HPC performance on various platforms are of paramount importance. This paper reviews the performance analysis tools and techniques for HPC applications and systems. Common HPC applications used by the researchers and HPC benchmarking suites are discussed. A qualitative comparison of various tools used for the performance analysis of HPC applications is provided. Conclusions are drawn with future research directions.

Keywords

Performance analysis High performance computing (HPC) Cloud computing Smart infrastructure Supercomputers Clusters Benchmarks 

Notes

Acknowledgements

The authors acknowledge with thanks the technical and financial support from the Deanship of Scientific Research (DSR) at the King Abdulaziz University (KAU), Jeddah, Saudi Arabia, under the grant number G-651-611-38. The work carried out in this paper is supported by the High Performance Computing Center at the King Abdulaziz University, Jeddah.

References

  1. 1.
    Ábrahám, E., Bekas, C., Brandic, I., Genaim, S., Johnsen, E.B., Kondov, I., Pllana, S., Streit, A.: Preparing HPC applications for exascale: Challenges and recommendations (2015). CoRR abs/1503.06974. http://arxiv.org/abs/1503.06974
  2. 2.
    Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindahl, E.: Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015). http://www.sciencedirect.com/science/article/pii/S2352711015000059 CrossRefGoogle Scholar
  3. 3.
    Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H., Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: the plasma and magma projects. J. Phys. Conf. Ser. 180, 012037 (2009)CrossRefGoogle Scholar
  4. 4.
    Ahmed, W., Khan, M., Khan, A.A., Mehmood, R., Algarni, A., Albeshri, A., Katib, I.: A framework for faster porting of scientific applications between heterogeneous clouds. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications. pp. 27–43. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  5. 5.
    Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and IoT for smart ubiquitous environments: a survey. IEEE Access 5, 9533–9554 (2017)CrossRefGoogle Scholar
  6. 6.
    Alam, F., Mehmood, R., Katib, I.: D2TFRS: an object recognition method for autonomous vehicles based on RGB and spatial values of pixels. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications. pp. 155–168. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  7. 7.
    Alamoudi, E., Mehmood, R., Albeshri, A., Gojobori, T.: Dna profiling methods and tools: a review. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications, pp. 216–231. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  8. 8.
    Alomari, E., Mehmood, R.: Analysis of tweets in Arabic language for detection of road traffic conditions. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications. pp. 98–110. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  9. 9.
    Alonso, P., Badia, R.M., Labarta, J., Barreda, M., Dolz, M.F., Mayo, R., Quintana-Orti, E.S., Reyes, R.: Tools for power-energy modelling and analysis of parallel scientific applications. In: 2012 41st International Conference on Parallel Processing (ICPP), pp. 420–429. IEEE, New York (2012)Google Scholar
  10. 10.
    Alotaibi, S., Mehmood, R.: Big data enabled healthcare supply chain management: opportunities and challenges. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications, pp. 207–215. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  11. 11.
    Alyahya, H., Mehmood, R., Katib, I.: Parallel sparse matrix vector multiplication on Intel MIC: performance analysis. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications, pp. 306–322. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  12. 12.
    Alzahrani, S., Ikbal, M.R., Mehmood, R., Fayez, M., Katib, I.: Performance evaluation of Jacobi iterative solution for sparse linear equation system on multicore and manycore architectures. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications, pp. 296–305. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  13. 13.
    Amazon: AWS | Amazon Elastic Block Store (EBS) - Incremental Backup & Persistent Storage. http://aws.amazon.com/ebs/
  14. 14.
    Aqib, M., Mehmood, R., Albeshri, A., Alzahrani, A.: Disaster management in smart cities by forecasting traffic plan using deep learning and GPUs. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications, pp. 139–154. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  15. 15.
    Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.: Enabling smarter societies through mobile big data fogs and clouds. Proc. Comput. Sci. 109, 1128–1133 (2017). http://www.sciencedirect.com/science/article/pii/S1877050917311213. 8th International Conference on Ambient Systems, Networks and Technologies, ANT-2017 and the 7th International Conference on Sustainable Energy Information Technology, SEIT 2017, 16-19 May 2017, MadeiraCrossRefGoogle Scholar
  16. 16.
    Arfat, Y., Mehmood, R., Albeshri, A.: Parallel shortest path graph computations of United States road network data on apache spark. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications, pp. 323–336. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  17. 17.
    Azad, A., Ballard, G., Buluç, A., Demmel, J., Grigori, L., Schwartz, O., Toledo, S., Williams, S.: Exploiting multiple levels of parallelism in sparse matrix-matrix multiplication. SIAM J. Sci. Comput. 38(6), C624–C651 (2016). https://doi.org/10.1137/15M104253X MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Bader, D.A.: Petascale Computing: Algorithms and Applications. CRC Press, Boca Raton (2007)zbMATHCrossRefGoogle Scholar
  19. 19.
    Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L., Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., et al.: The NAS parallel benchmarks. Int. J. High Perform. Comput. Appl. 5(3), 63–73 (1991)Google Scholar
  20. 20.
    Bailey, J.A., Bazavov, A., Bernard, C., Bouchard, C.M., DeTar, C., Du, D., El-Khadra, A.X., Foley, J., Freeland, E.D., Gámiz, E., Gottlieb, S., Heller, U.M., Kim, J., Kronfeld, A.S., Laiho, J., Levkova, L., Mackenzie, P.B., Meurice, Y., Neil, E.T., Oktay, M.B., Qiu, S.W., Simone, J.N., Sugar, R., Toussaint, D., Van de Water, R.S., Zhou, R.: Refining new-physics searches in b → dτν with lattice QCD. Phys. Rev. Lett. 109, 071802 (2012). https://link.aps.org/doi/10.1103/PhysRevLett.109.071802
  21. 21.
    Benedict, S.: Performance issues and performance analysis tools for HPC cloud applications: a survey. Computing 95(2), 89–108 (2013)CrossRefGoogle Scholar
  22. 22.
    Berriman, G.B., Juve, G., Deelman, E., Regelson, M., Plavchan, P.: The application of cloud computing to astronomy: A study of cost and performance. In: 2010 Sixth IEEE International Conference on e-Science Workshops, December, pp. 1–7 (2010)Google Scholar
  23. 23.
    Bhatele, A., Kumar, S., Mei, C., Phillips, J.C., Zheng, G., Kale, L.V.: Overcoming scaling challenges in biomolecular simulations across multiple platforms. In: IEEE International Symposium on Parallel and Distributed Processing, 2008 (IPDPS 2008), pp. 1–12. IEEE, New York (2008)Google Scholar
  24. 24.
    Bohra, A.E.H., Chaudhary, V.: Vmeter: power modelling for virtualized clouds. In: 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and PhD Forum (IPDPSW), pp. 1–8. IEEE, New York (2010)Google Scholar
  25. 25.
  26. 26.
    Burtscher, M., Kim, B.D., Diamond, J., McCalpin, J., Koesterke, L., Browne, J.: PerfExpert: an easy-to-use performance diagnosis tool for HPC applications. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–11. IEEE Computer Society, Washington (2010)Google Scholar
  27. 27.
    Carrington, L.C., Laurenzano, M., Snavely, A., Campbell Jr., R.L., Davis, L.P.: How well can simple metrics represent the performance of HPC applications? In: Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference, pp. 48–48. IEEE, New York (2005)Google Scholar
  28. 28.
    Carrington, L., Snavely, A., Wolter, N.: A performance prediction framework for scientific applications. Fut. Gener. Comput. Syst. 22(3), 336–346 (2006)CrossRefGoogle Scholar
  29. 29.
    Carter, J., Oliker, L., Shalf, J.: Performance evaluation of scientific applications on modern parallel vector systems. In: High Performance Computing for Computational Science-VECPAR 2006, pp. 490–503. Springer, New York (2007)Google Scholar
  30. 30.
    Djoudi, L., Barthou, D., Carribault, P., Lemuet, C., Acquaviva, J.T., Jalby, W.: Exploring application performance: a new tool for a static/dynamic approach. In: Proceedings of the 6th LACSI Symposium (2005)Google Scholar
  31. 31.
    Dongarra, J.L.A.P.: The LINPACK benchmark: past, present and future. Concurr. Comput. Pract. and Exp. 15, 1–18 (2003)CrossRefGoogle Scholar
  32. 32.
    Dunigan Jr, T.H., Vetter, J.S., White III, J.B., Worley, P.H.: Performance evaluation of the Cray x1 distributed shared-memory architecture. Micro, IEEE 25(1), 30–40 (2005)CrossRefGoogle Scholar
  33. 33.
    ECC2. Elastic Compute Cloud (EC2) Cloud Server & Hosting – AWS. https://aws.amazon.com/ec2/
  34. 34.
    Eleliemy, A., Fayez, M., Mehmood, R., Katib, I., Aljohani, N.: Loadbalancing on parallel heterogeneous architectures: Spin-image algorithm on CPU and MIC. In: 9th EUROSIM Congress on Modelling and Simulation. EUROSIM (2016). http://edoc.unibas.ch/53117/
  35. 35.
    ExpóSito, R.R., Taboada, G.L., Ramos, S., Touriño, J., Doallo, R.: Performance analysis of HPC applications in the cloud. Fut. Gener. Comput. Syst. 29(1), 218–229 (2013)CrossRefGoogle Scholar
  36. 36.
    Farber, R.: The convergence of big data and extreme-scale HPC (2018). https://www.hpcwire.com/2018/08/31/the-convergence-of-big-data-and-extreme-scale-hpc/
  37. 37.
    Ferreira, G., Kästner, C., Pfeffer, J., Apel, S.: Characterizing complexity of highly-configurable systems with variational call graphs: analyzing configuration options interactions complexity in function calls. In: Proceedings of the 2015 Symposium and Bootcamp on the Science of Security. p. 17. ACM, New York (2015)Google Scholar
  38. 38.
    Foster, I., Freeman, T., Keahy, K., Scheftner, D., Sotomayer, B., Zhang, X.: Virtual clusters for grid communities. In: Sixth IEEE International Symposium on Cluster Computing and the Grid, 2006 (CCGRID 06), vol. 1, pp. 513–520. IEEE, New York (2006)Google Scholar
  39. 39.
    Freche, J., Frings, W., Sutmann, G.: High-throughput parallel-I/O using SIONlib for mesoscopic particle dynamics simulations on massively parallel computers. In: Parallel Computing: From Multicores and GPU’s to Petascale Advances in Parallel Computing, vol. 19, pp. 371–378. IOS Press, Amsterdam (2010)Google Scholar
  40. 40.
    Freeman, T., Keahey, K., Sotomayor, B., Zhang, X., Foster, I., Scheftner, D.: Virtual clusters for grid communities. Citeseer (2006)Google Scholar
  41. 41.
    Gel, A., Hu, J., Ould-Ahmed-Vall, E., Kalinkin, A.A.: Modernization and optimization of a legacy open-source CFD code for high-performance computing architectures. Int. J. Comput. Fluid Dynam. 31(2), 122–133 (2017). https://doi.org/10.1080/10618562.2017.1285398 MathSciNetCrossRefGoogle Scholar
  42. 42.
    Genovese, L., Videau, B., Ospici, M., Deutsch, T., Goedecker, S., Méhaut, J.F.: Daubechies wavelets for high performance electronic structure calculations: The BigDFT project. Comptes Rendus Mécanique 339(2), 149–164 (2011). http://www.sciencedirect.com/science/article/pii/S1631072110002135. High Performance ComputingzbMATHCrossRefGoogle Scholar
  43. 43.
    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., et al.: Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. matter 21(39), 395502 (2009)CrossRefGoogle Scholar
  44. 44.
    Gibbon, P.: Pepc: pretty efficient parallel coulomb-solver. Sonstiger Interner Bericht ZAM-IB-2003-05, ZAM, Jülich, Forschungszentrum (2003)Google Scholar
  45. 45.
    Gordon, M.S., Schmidt, M.W.: Advances in electronic structure theory: GAMESS a decade later. In: Dykstra, C.E., Frenking, G., Kim, K.S., Scuseria, G.E. (eds.) Theory and Applications of Computational Chemistry, chapter 41, pp. 1167–1189. Elsevier, Amsterdam (2005). http://www.sciencedirect.com/science/article/pii/B9780444517197500846 CrossRefGoogle Scholar
  46. 46.
    Gudiksen, B.V., Carlsson, M., Hansteen, V.H., Hayek, W., Leenaarts, J., Martínez-Sykora, J.: The stellar atmosphere simulation code Bifrost - code description and validation. Astron. Astrophys. 531, A154 (2011). https://doi.org/10.1051/0004-6361/201116520 CrossRefGoogle Scholar
  47. 47.
    Gupta, A., Faraboschi, P., Gioachin, F., Kale, L., Kaufmann, R., Lee, B.S., March, V., Milojicic, D., Suen, C.: Evaluating and improving the performance and scheduling of HPC applications in cloud. IEEE Trans. Cloud Comput. 4(99), 1–1 (2014)Google Scholar
  48. 48.
    Gustafson, J.L., Todi, R.: Conventional benchmarks as a sample of the performance spectrum. In: Proceedings of the Thirty-First Hawaii International Conference on System Sciences, 1998, vol. 7, pp. 514–523. IEEE, New York (1998)Google Scholar
  49. 49.
    Gygi, F., Yates, R.K., Lorenz, J., Draeger, E.W., Franchetti, F., Ueberhuber, C.W., Supinski, B.R.D., Kral, S., Gunnels, J.A., Sexton, J.C.: Large-scale first-principles molecular dynamics simulations on the Bluegene/l platform using the Qbox code. In: Proceedings of the 2005 ACM/IEEE conference on Supercomputing, p. 24. IEEE Computer Society, Washington (2005)Google Scholar
  50. 50.
    Heck, D., Pierog, T., Knapp, J.: CORSIKA: An Air Shower Simulation Program. Astrophysics Source Code Library (2012)Google Scholar
  51. 51.
    Hwu, W.M., Chang, L.W., Kim, H.S., Dakkak, A., El Hajj, I.: Transitioning HPC software to exascale heterogeneous computing. In: Computational Electromagnetics International Workshop (CEM), July 2015, pp. 1–2 (2015)Google Scholar
  52. 52.
    Irbäck, A., Mohanty, S.: Profasi: A Monte Carlo simulation package for protein folding and aggregation. J. Comput. Chem. 27(13), 1548–1555. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20452 CrossRefGoogle Scholar
  53. 53.
    Jackson, K.R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J., Wasserman, H.J., Wright, N.J.: Performance analysis of high performance computing applications on the amazon web services cloud. In: 2010 IEEE Second International Conference on Cloud Computing Technology and Science (CloudCom), pp. 159–168. IEEE, New York (2010)Google Scholar
  54. 54.
    Jacobsen, N.G., Fuhrman, D.R., Fredsøe, J.: A wave generation toolbox for the open-source CFD library: Openfoam®. Int. J. Numer. Methods Fluids 70(9), 1073–1088. https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.2726 MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Jetley, P., Gioachin, F., Mendes, C., Kale, L.V., Quinn, T.: Massively parallel cosmological simulations with ChaNGa. In: International Symposium on Parallel and Distributed Processing, 2008 (IPDPS 2008), pp. 1–12. IEEE, New York (2008)Google Scholar
  56. 56.
    Jin, H., Van der Wijngaart, R.F.: Performance characteristics of the multi-zone NAS parallel benchmarks. In: Proceedings of the 18th International Parallel and Distributed Processing Symposium, 2004, p. 6. IEEE, New York (2004)Google Scholar
  57. 57.
    Jöckel, P., Sander, R., Kerkweg, A., Tost, H., Lelieveld, J.: Technical note: the modular earth submodel system (MESSy) - a new approach towards earth system modeling. Atmos. Chem. Phys. 5(2), 433–444 (2005). https://www.atmos-chem-phys.net/5/433/2005/ CrossRefGoogle Scholar
  58. 58.
    Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core language for abstract behavioral specification. In: Formal Methods for Components and Objects, pp. 142–164. Springer, New York (2012)CrossRefGoogle Scholar
  59. 59.
    Jurenz, M., Brendel, R., Knüpfer, A., Müller, M., Nagel, W.E.: Memory allocation tracing with VampireTrace. In: Computational Science–ICCS 2007, pp. 839–846. Springer, New York (2007)CrossRefGoogle Scholar
  60. 60.
    Kale, L.V., Krishnan, S.: CHARM++: A Portable Concurrent Object Oriented System Based on C++, vol. 28. ACM, New York (1993)Google Scholar
  61. 61.
    Kay, J.E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J.M., Bates, S.C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., Vertenstein, M.: The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96(8), 1333–1349 (2015).  https://doi.org/10.1175/BAMS-D-13-00255.1 CrossRefGoogle Scholar
  62. 62.
    Keahey, K., Figueiredo, R., Fortes, J., Freeman, T., Tsugawa, M.: Science clouds: early experiences in cloud computing for scientific applications. Cloud Comput. Appl. 2008, 825–830 (2008)Google Scholar
  63. 63.
    Khanum, A., Alvi, A., Mehmood, R.: Towards a semantically enriched computational intelligence (SECI) framework for smart farming. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications. pp. 247–257. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  64. 64.
    Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F.: libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22(3), 237–254 (2006). https://doi.org/10.1007/s00366-006-0049-3 CrossRefGoogle Scholar
  65. 65.
    Kn̈pfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller, M.S., Nagel, W.E.: The Vampir performance analysis tool-set. In: Tools for High Performance Computing, pp. 139–155. Springer, New York (2008)Google Scholar
  66. 66.
    Kodiyalam, S., Yang, R., Gu, L., Tho, C.H.: Multidisciplinary design optimization of a vehicle system in a scalable, high performance computing environment. Struct. Multidiscip. Optim. 26(3), 256–263 (2004). https://doi.org/10.1007/s00158-003-0343-2 CrossRefGoogle Scholar
  67. 67.
    Komatitsch, D., Tromp, J.: Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int. 139(3), 806–822 (1999). https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-246x.1999.00967.x CrossRefGoogle Scholar
  68. 68.
    Kramer, W., Shalf, J., Strohmaier, E.: The NERSC Sustained System Performance (SSP) Metric. Lawrence Berkeley National Laboratory (2005)Google Scholar
  69. 69.
    Kwiatkowska, M., Mehmood, R.: Out-of-core solution of large linear systems of equations arising from stochastic modelling. In: Hermanns, H., Segala, R. (eds.) Process Algebra and Probabilistic Methods: Performance Modeling and Verification, pp. 135–151. Springer, Berlin/Heidelberg (2002)CrossRefGoogle Scholar
  70. 70.
    Kwiatkowska, M., Mehmood, R., Norman, G., Parker, D.: A symbolic out-of-core solution method for Markov models. Electron. Notes Theor. Comput. Sci. 68(4), 589–604 (2002). http://www.sciencedirect.com/science/article/pii/S1571066105803949 zbMATHCrossRefGoogle Scholar
  71. 71.
    Kwiatkowska, M., Parker, D., Zhang, Y., Mehmood, R.: Dual-processor parallelisation of symbolic probabilistic model checking. In: Proceedings of the IEEE Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, MASCOTS ’04, pp. 123–130. IEEE Computer Society, Washington (2004). http://dl.acm.org/citation.cfm?id=1032659.1034195
  72. 72.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proceedings of the 23rd International Conference on Computer Aided Verification (CAV’11). Lecture Notes in Computer Science, vol. 6806, pp. 585–591. Springer, New York (2011)Google Scholar
  73. 73.
    Letherwood, M.D., Gunter, D.D.: Ground vehicle modeling and simulation of military vehicles using high performance computing. Parallel Comput. 27(1), 109–140 (2001). http://www.sciencedirect.com/science/article/pii/S0167819100000910. New Trends in High Performance ComputingzbMATHCrossRefGoogle Scholar
  74. 74.
    Lingerfelt, E., Endeve, E., Hui, Y., Smith, C., Somnath, S., Grodowitz, N., Borreguero, J., Bao, F., Niedziela, J., Bansal, D., Delaire, O., Archibald, R., Belianinov, A., Shankar, M., Jesse, S.: BEAM: an HPC pipeline for nanoscale materials analysis and neutron data modeling. In: APS March Meeting Abstracts, p. A7.002 (2017)Google Scholar
  75. 75.
    Lusk, E., Huss, S., Saphir, B., Snir, M.: MPI: a message-passing interface standard (2009)Google Scholar
  76. 76.
    Luszczek, P.R., Bailey, D.H., Dongarra, J.J., Kepner, J., Lucas, R.F., Rabenseifner, R., Takahashi, D.: The HPC challenge (HPCC) benchmark suite. In: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, p. 213. Citeseer (2006)Google Scholar
  77. 77.
    Mantripragada, K., Binotto, A., Tizzei, L., Netto, M.: A feasibility study of using HPC cloud environment for seismic exploration. In: 77th EAGE Conference and Exhibition 2015 (2015)Google Scholar
  78. 78.
    McCalpin, J.D.: Memory bandwidth and machine balance in current high performance computers (1995)Google Scholar
  79. 79.
    Mehmood, R.: A survey of out-of-core analysis techniques in stochastic modelling. Report CSR-03-7, University of Birmingham (2003). https://www.researchgate.net/publication/326827715_A_Survey_of_Out-of-Core_Analysis_Techniques_in_Stochastic_Modelling
  80. 80.
    Mehmood, R.: Disk-based Techniques for Efficient Solution of Large Markov Chains. Thesis (2004)Google Scholar
  81. 81.
    Mehmood, R.: Serial Disk-Based Analysis of Large Stochastic Models, pp. 230–255. Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24611-4_7 Google Scholar
  82. 82.
    Mehmood, R., Crowcroft, J.: Parallel iterative solution method for large sparse linear equation systems. UCAM-CL-TR-650. Report UCAM-CL-TR-650, University of Cambridge, Computer Laboratory (2005). http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-650.pdf
  83. 83.
    Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing model. Proc. Comput. Sci. 64, 1107–1114 (2015). http://www.sciencedirect.com/science/article/pii/S1877050915027015. Conference on ENTERprise Information Systems/International Conference on Project MANagement/Conference on Health and Social Care Information Systems and Technologies, CENTERIS/ProjMAN/HCist 2015 October 7-9, 2015
  84. 84.
    Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. J. Manuf. Technol. Manage. 22(6), 804–817 (2011). https://doi.org/10.1108/17410381111149657 CrossRefGoogle Scholar
  85. 85.
    Mehmood, R., Parker, D., Kwiatkowska, M.: An efficient BDD-based implementation of Gauss-Seidel for CTMC analysis. Report CSR-03-13, University of Birmingham (2003). http://www.prismmodelchecker.org/bibitem.php?key=MPK03b
  86. 86.
    Mehmood, R., Crowcroft, J., Elmirghani, J.M.H.: A parallel implicit method for the steady-state solution of CTMCs. In: 14th IEEE International Symposium on Modeling, Analysis, and Simulation, pp. 293–302 (2006)Google Scholar
  87. 87.
    Mehmood, R., Faisal, M.A., Altowaijri, S.: Future networked healthcare systems: a review and case study. In: Boucadair, M., Jacquenet, C. (eds.) Handbook of Research on Redesigning the Future of Internet Architectures, pp. 531–558. IGI Global, Hershey, PA (2015). http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-8371-6.ch022 CrossRefGoogle Scholar
  88. 88.
    Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: UTiLearn: a personalised ubiquitous teaching and learning system for smart societies. IEEE Access 5, 2615–2635 (2017)CrossRefGoogle Scholar
  89. 89.
    Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence of big data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manage. 37(1), 75–104 (2017).  https://doi.org/10.1108/IJOPM-03-2015-0179 CrossRefGoogle Scholar
  90. 90.
    Meinke, J.H., Mohanty, S., Eisenmenger, F., Hansmann, U.H.E.: SMMP v. 3.0-simulating proteins and protein interactions in Python and Fortran. Comput. Phys. Commun. 178, 459–470 (2008)zbMATHCrossRefGoogle Scholar
  91. 91.
    Moureau, V., Domingo, P., Vervisch, L.: Design of a massively parallel CFD code for complex geometries. Comptes Rendus Mécanique 339(2), 141–148 (2011). http://www.sciencedirect.com/science/article/pii/S1631072110002111. High Performance ComputingzbMATHCrossRefGoogle Scholar
  92. 92.
    MPI: Open MPI: Open Source High Performance Computing. http://www.open-mpi.org/
  93. 93.
    MPICH: MPICH | High-Performance Portable MPI. http://www.mpich.org/
  94. 94.
    Muhammed, T., Mehmood, R., Albeshri, A.: Enabling reliable and resilient IoT based smart city applications. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications, pp. 169–184. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  95. 95.
    Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: Ubehealth: a personalized ubiquitous cloud and edge-enabled networked healthcare system for smart cities. IEEE Access 6, 32258–32285 (2018)CrossRefGoogle Scholar
  96. 96.
    Nakajima, K.: Three-level hybrid vs. flat MPI on the earth simulator: parallel iterative solvers for finite-element method. Appl. Numer. Math. 54(2), 237–255 (2005)zbMATHCrossRefGoogle Scholar
  97. 97.
    NAS: NAS Parallel Benchmarks. http://www.nas.nasa.gov/publications/npb.html
  98. 98.
    Nielsen, E.J., Diskin, B.: High-performance aerodynamic computations for aerospace applications. Parall. Comput. 64, 20–32 (2017). http://www.sciencedirect.com/science/article/pii/S0167819117300182. High-End Computing for Next-Generation Scientific Discovery
  99. 99.
    Niethammer, C., Gracia, J., Knüpfer, A., Resch, M.M., Nagel, W.E.: Tools for High Performance Computing 2014: Proceedings of the 8th International Workshop on Parallel Tools for High Performance Computing, October 2014, HLRS, Stuttgart. Springer, New York (2015)zbMATHCrossRefGoogle Scholar
  100. 100.
    Nonaka, A., Almgren, A.S., Bell, J.B., Lijewski, M.J., Malone, C.M., Zingale, M.: Maestro: an adaptive low Mach number hydrodynamics algorithm for Stellar flows 188(2), 358–383 (2010). http://dx.doi.org/10.1088/0067-0049/188/2/358
  101. 101.
    Oliker, L., Canning, A., Carter, J., Shalf, J., Ethier, S.: Scientific computations on modern parallel vector systems. In: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, p. 10. IEEE Computer Society, Washington (2004)Google Scholar
  102. 102.
    Oliker, L., Carter, J., Wehner, M., Canning, A., Ethier, S., Mirin, A., Parks, D., Worley, P., Kitawaki, S., Tsuda, Y.: Leading computational methods on scalar and vector HEC platforms. In: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, p. 62. IEEE Computer Society, Washington (2005)Google Scholar
  103. 103.
    Oliker, L., Canning, A., Carter, J., Iancu, C., Lijewski, M., Kamil, S., Shalf, J., Shan, H., Strohmaier, E., Ethier, S., et al.: Scientific application performance on candidate petascale platforms. In: IEEE International Parallel and Distributed Processing Symposium, 2007 (IPDPS 2007), pp. 1–12. IEEE, New York (2007)Google Scholar
  104. 104.
    Pfrommer, B., Raczkowski, D., Canning, A., Louie, S.: Paratec (parallel total energy code), Lawrence Berkeley national laboratory (with contributions from F. Mauri, M. Cote, Y. Yoon, C. Pickard and P. Haynes). www.nersc.gov/projects/paratec
  105. 105.
    Pérez, F.E.H., Mukhadiyev, N., Xu, X., Sow, A., Lee, B.J., Sankaran, R., Im, H.G.: Direct numerical simulations of reacting flows with detailed chemistry using many-core/GPU acceleration. Comput. Fluids 173, 73–79 (2018). http://www.sciencedirect.com/science/article/pii/S0045793018301786 MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Pllana, S., Brandic, I., Benkner, S.: A survey of the state of the art in performance modeling and prediction of parallel and distributed computing systems. Int. J. Comput. Intel. Res.(IJCIR) 4, 17–26 (2008)Google Scholar
  107. 107.
    Qiang, J., Lidia, S., Ryne, R.D., Limborg-Deprey, C.: Three-dimensional quasistatic model for high brightness beam dynamics simulation. Phys. Rev. ST Accel. Beams 9, 044204 (2006). https://link.aps.org/doi/10.1103/PhysRevSTAB.9.044204 CrossRefGoogle Scholar
  108. 108.
    Reed, D.A., Dongarra, J.: Exascale computing and big data. Commun. ACM 58(7), 56–68 (2015). http://doi.acm.org/10.1145/2699414 CrossRefGoogle Scholar
  109. 109.
    Rudi, J., Malossi, A.C.I., Isaac, T., Stadler, G., Gurnis, M., Staar, P.W.J., Ineichen, Y., Bekas, C., Curioni, A., Ghattas, O.: An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in earth’s mantle. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’15, pp. 5:1–5:12. ACM, New York, (2015). http://doi.acm.org/10.1145/2807591.2807675
  110. 110.
    Sáez, X., Soba, A., Sánchez, E., Kleiber, R., Castejón, F., Cela, J.M.: Improvements of the particle-in-cell code EUTERPE for petascaling machines. Comput. Phys. Commun. 182(9), 2047–2051 (2011). http://www.sciencedirect.com/science/article/pii/S001046551000531X. Computer Physics Communications Special Edition for Conference on Computational Physics Trondheim, June 23-26, 2010CrossRefGoogle Scholar
  111. 111.
    Schlingensiepen, J., Nemtanu, F., Mehmood, R., McCluskey, L.: Autonomic Transport Management Systems—Enabler for Smart Cities, Personalized Medicine, Participation and Industry Grid/Industry 4.0, pp. 3–35. Springer International Publishing, Cham (2016)Google Scholar
  112. 112.
    Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., et al.: General atomic and molecular electronic structure system. J. Computat. Chem. 14(11), 1347–1363 (1993)CrossRefGoogle Scholar
  113. 113.
    Schwarz, K., Blaha, P., Madsen, G.: Electronic structure calculations of solids using the WIEN2K package for material sciences. Comput. Phys. Commun. 147(1), 71 – 76 (2002). http://www.sciencedirect.com/science/article/pii/S0010465502002060. Proceedings of the Europhysics Conference on Computational Physics Computational Modeling and Simulation of Complex Systems
  114. 114.
    Snavely, A., Gao, X., Lee, C., Carrington, L., Wolter, N., Labarta, J., Gimenez, J., Jones, P.: Performance modeling of HPC applications. In: PARCO, vol. 13, pp. 777–784 (2003)Google Scholar
  115. 115.
    Stanisic, L., Videau, B., Cronsioe, J., Degomme, A., Marangozova-Martin, V., Legrand, A., Méhaut, J.F.: Performance analysis of HPC applications on low-power embedded platforms. In: Proceedings of the Conference on Design, Automation and Test in Europe, March, pp. 475–480. EDA Consortium (2013)Google Scholar
  116. 116.
    Strunk, T., Wolf, M., Brieg, M., Klenin, K., Biewer, A., Tristram, F., Ernst, M., Kleine, P.J., Heilmann, N., Kondov, I., Wenzel, W.: Simona 1.0: An efficient and versatile framework for stochastic simulations of molecular and nanoscale systems. J. Comput. Chem. 33(32), 2602–2613. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23089 CrossRefGoogle Scholar
  117. 117.
    Subbiah, A., Wasynczuk, O.: Computationally efficient simulation of high-frequency transients in power electronic circuits. IEEE Trans. Power Electron. 31(9), 6351–6361 (2016)CrossRefGoogle Scholar
  118. 118.
    Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation logistics and planning for smarter societies. Proc. Comput. Sci. 109, 1122–1127 (2017). http://www.sciencedirect.com/science/article/pii/S1877050917311225. 8th International Conference on Ambient Systems, Networks and Technologies, ANT-2017 and the 7th International Conference on Sustainable Energy Information Technology, SEIT 2017, 16–19 May 2017, MadeiraCrossRefGoogle Scholar
  119. 119.
    Suma, S., Mehmood, R., Albeshri, A.: Automatic event detection in smart cities using big data analytics. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications, pp. 111–122. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  120. 120.
    Taboada, G.L., Touriño, J., Doallo, R.: F-MPJ: scalable java message-passing communications on parallel systems. J. Supercomput. 60(1), 117–140 (2012)CrossRefGoogle Scholar
  121. 121.
    Tikir, M.M., Carrington, L., Strohmaier, E., Snavely, A.: A genetic algorithms approach to modeling the performance of memory-bound computations. In: Proceedings of the 2007 ACM/IEEE conference on Supercomputing, p. 47. ACM, New York (2007)Google Scholar
  122. 122.
    Tomov, S., Nath, R., Ltaief, H., Dongarra, J.: Dense linear algebra solvers for multicore with GPU accelerators. In: 2010 IEEE International Symposium on Parallel Distributed Processing, Workshops and PhD Forum (IPDPSW), April, pp. 1–8 (2010)Google Scholar
  123. 123.
    Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid GPU accelerated manycore systems. Parall. Comput. 36(5), 232–240 (2010). http://www.sciencedirect.com/science/article/pii/S0167819109001276. Parallel Matrix Algorithms and Applications
  124. 124.
    Usman, S., Mehmood, R., Katib, I.: Big data and hpc convergence: the cutting edge and outlook. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications. pp. 11–26. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  125. 125.
    Vetter, J.S., Alam, S.R., Dunigan, T.H., Fahey, M.R., Roth, P.C., Worley, P.H.: Early evaluation of the Cray XT3. In: 20th International Parallel and Distributed Processing Symposium, 2006 (IPDPS 2006), 10 pp. IEEE, New York (2006)Google Scholar
  126. 126.
    Voorsluys, W., Garg, S.K., Buyya, R.: Provisioning spot market cloud resources to create cost-effective virtual clusters. In: Algorithms and Architectures for Parallel Processing, pp. 395–408. Springer, Berlin (2011)CrossRefGoogle Scholar
  127. 127.
    Wolf, F., Wylie, B.J., Abrahám, E., Becker, D., Frings, W., Fürlinger, K., Geimer, M., Hermanns, M.A., Mohr, B., Moore, S., et al.: Usage of the scalasca toolset for scalable performance analysis of large-scale parallel applications. In: Tools for High Performance Computing, pp. 157–167. Springer, New York (2008)Google Scholar
  128. 128.
    Wylie, B.J.N., Geimer, M., Mohr, B., Böhme, D., Szebenyi, Z., Wolf, F.: Large-scale performance analysis of Sweep3D with the scalasca toolset. Parall. Process. Lett. 20(04), 397–414 (2010). https://doi.org/10.1142/S0129626410000314 MathSciNetCrossRefGoogle Scholar
  129. 129.
    Yan, S., Zhou, Z., Dinavahi, V.: Large-scale nonlinear device-level power electronic circuit simulation on massively parallel graphics processing architectures. IEEE Trans. Power Electron. 33(6), 4660–4678 (2018)CrossRefGoogle Scholar
  130. 130.
    Yang, R., Gu, L., Tho, C., Sobieszczanski-Sobieski, J.: Multidisciplinary design optimization of a full vehicle with high performance computing. In: Fluid Dynamics and Co-located Conferences, June. American Institute of Aeronautics and Astronautics, Reston (2001). https://doi.org/10.2514/6.2001-1273
  131. 131.
    Zaki, O., Lusk, E., Gropp, W., Swider, D.: Toward scalable performance visualization with Jumpshot. Int. J. High Perform. Comput. Appl. 13(3), 277–288 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Thaha Muhammed
    • 1
    Email author
  • Rashid Mehmood
    • 2
  • Aiiad Albeshri
    • 1
  • Fawaz Alsolami
    • 1
  1. 1.Department of Computer Science, FCITKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.High Performance Computing Center, King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations