Advertisement

Optimizing the Use of Biomarkers in the ER

  • Carlos Jerjes-SánchezEmail author
  • David Rodríguez
Chapter

Abstract

Cardiac biomarkers have emerged as reliable tools to identify bedside myocardial necrosis, ventricular failure, and endogenous fibrinolysis activation, improving the outcome of thousands of patients around the world presenting in the emergency room (ER). However, any biomarker should not be used as a stand-alone test for diagnosis of cardiovascular disease. Although there have been enormous advances in their analytical features increasing clinical operating characteristics, we are still far from the ideal biomarker. Furthermore, any physician should be familiar with the concepts of clinical sensitivity and specificity, as well as predictive values and likelihood ratios. Physicians in charge will be able to request a test, interpret the results, and deliberate their meaning for clinical decision-making in an appropriate manner. The severity of the potential consequences relates to the test being performed, the extent of the difference between the reported result and the true result, as well as the ability of clinicians to recognize the issues related to biomarker testing. During this chapter, we will discuss the basic principles for the proper use of biomarkers, physiology, analytical features, clinical relevance, and challenges and limitations of high-sensitivity cardiac troponins, natriuretic peptides, and D-dimer in the ER. Also, we will address the concepts of predictive values and likelihood ratios as the essential concepts of Bayesian reasoning and its application for the benefit of our patients.

Keywords

Biomarkers Cardiac troponins B-type natriuretic peptide NT-proBNP D-Dimer Bayesian reasoning 

References

  1. 1.
    Graham KJ, Strauss CE, Boland LL, Mooney MR, Harris KM, Unger BT, et al. Has the time come for a National Cardiovascular Emergency Care System? Circulation. 2012;125:2035–44.CrossRefGoogle Scholar
  2. 2.
    Thygesen K, Mair J, Mueller C, Huber K, Weber M, Plebani M, et al. Recommendations for the use of natriuretic peptides in acute cardiac care: a position statement from the Study Group on Biomarkers in Cardiology of the ESC Working Group on Acute Cardiac Care. Eur Heart J. 2012;33:2001–6.CrossRefGoogle Scholar
  3. 3.
    Favaloro EJ, Adcock Funk DM, Lippi G. Pre-analytical variables in coagulation testing associated with diagnostic errors in hemostasis. Lab Med. 2012;43:1.2–10.CrossRefGoogle Scholar
  4. 4.
    Brush JE, Kaul S, Krumholz HM. Troponin testing for clinicians. J Am Coll Cardiol. 2016;68:2365–75.CrossRefGoogle Scholar
  5. 5.
    Brush JE, Krumholz HM. The science of the art of medicine: a guide to medical reasoning. 1st ed: Manakin-Sabot, VA: Dementi Milestone Publishing; 2015.Google Scholar
  6. 6.
    Jaffe A. The use of biomarkers for acute cardiovascular disease. In: Tubaro M, Vranckx P, editors. The ESC textbook of Acute and Intensive Cardiosvacular Care. 2nd ed. Oxford, England, UK: Oxford University Press; 2014.Google Scholar
  7. 7.
    Magnette A, Chatelain M, Chatelain B, Ten Cate H, Mullier F. Pre-analytical issues in the haemostasis laboratory: guidance for the clinical laboratories. Thromb J [Internet]. 2016. [cited 2018 Sep 2];14:49. Available from:  https://doi.org/10.1186/s12959-016-0123-z.
  8. 8.
    Simundic A-M, Lippi G. Preanalytical phase--a continuous challenge for laboratory professionals. Biochem Med. 2012;22:145–9.CrossRefGoogle Scholar
  9. 9.
    Saah AJ, Hoover DR. “Sensitivity” and “specificity” reconsidered: the meaning of these terms in analytical and diagnostic settings. Ann Intern Med. 1997;126:91–4.CrossRefGoogle Scholar
  10. 10.
    Florkowski CM. Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests. Clin Biochem Rev. 2008;29(Suppl 1):S83–7.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Lalkhen AG, McCluskey A. Clinical tests: sensitivity and specificity. Contin Educ Anaesth Crit Care Pain. 2008;8:221–3.CrossRefGoogle Scholar
  12. 12.
    Thygesen K, Mair J, Giannitsis E, Mueller C, Lindahl B, Blankenberg S, et al. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur Heart J. 2012;33:2252–7.CrossRefGoogle Scholar
  13. 13.
    Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. Circulation. 2012;126:2020–35.CrossRefGoogle Scholar
  14. 14.
    Amsterdam EA, Wenger NK, Brindis RG, Casey DE, Ganiats TG, Holmes DR, et al. 2014 AHA/ACC guideline for the management of patients with non–ST-elevation acute coronary syndromes. J Am Coll Cardiol. 2014;64:e139–228.CrossRefGoogle Scholar
  15. 15.
    Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2018;39:119–77.CrossRefGoogle Scholar
  16. 16.
    Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction. Eur Heart J. 2018;00:1–33.Google Scholar
  17. 17.
    Westermann D, Neumann JT, Sörensen NA, Blankenberg S. High-sensitivity assays for troponin in patients with cardiac disease. Nat Rev Cardiol. 2017;14:472–83.CrossRefGoogle Scholar
  18. 18.
    Okyay K, Yildirir A. The preanalytical and analytical factors responsible for false-positive cardiac troponins. Anadolu Kardiyol Derg Anatol J Cardiol. 2015;15:264–5.CrossRefGoogle Scholar
  19. 19.
    Herman DS, Kavsak PA, Greene DN. Variability and error in cardiac troponin testing. Am J Clin Pathol. 2017;148:281–95.CrossRefGoogle Scholar
  20. 20.
    Mahajan VS, Jarolim P. How to interpret elevated cardiac troponin levels. Circulation. 2011;124:2350–4.CrossRefGoogle Scholar
  21. 21.
    Wu AHB, Christenson R. The era for high-sensitivity cardiac troponin has begun in the US (finally). J Appl Lab Med AACC Publ. 2017;2:1–3.CrossRefGoogle Scholar
  22. 22.
    Adamson PD, Anderson JA, Brook RD, Calverley PMA, Celli BR, Cowans NJ, et al. Cardiac troponin I and cardiovascular risk in patients with chronic obstructive pulmonary disease. J Am Coll Cardiol. 2018;72:1126–37.CrossRefGoogle Scholar
  23. 23.
    Schneider ALC, Rawlings AM, Sharrett AR, Alonso A, Mosley TH, Hoogeveen RC, et al. High-sensitivity cardiac troponin T and cognitive function and dementia risk: the atherosclerosis risk in communities study. Eur Heart J. 2014;35:1817–24.CrossRefGoogle Scholar
  24. 24.
    Matsushita K, Kwak L, Yang C, Pang Y, Ballew SH, Sang Y, et al. High-sensitivity cardiac troponin and natriuretic peptide with risk of lower-extremity peripheral artery disease: the Atherosclerosis Risk in Communities (ARIC) Study. Eur Heart J. 2018;39:2412–9.CrossRefGoogle Scholar
  25. 25.
    Devereaux PJ, Duceppe E, Guyatt G, Tandon V, Rodseth R, Biccard BM, et al. Dabigatran in patients with myocardial injury after non-cardiac surgery (MANAGE): an international, randomised, placebo-controlled trial. Lancet. 2018;391:2325–34.CrossRefGoogle Scholar
  26. 26.
    Twerenbold R, Boeddinghaus J, Mueller C. Update on high-sensitivity cardiac troponin in patients with suspected myocardial infarction. Eur Heart J Suppl. 2018;20:G2–10.CrossRefGoogle Scholar
  27. 27.
    Lee GR, Browne TC, Guest B, Khan I, Murphy E, McGorrian C, et al. Transitioning high sensitivity cardiac troponin I (hs-cTnI) into routine diagnostic use: more than just a sensitivity issue. Pract Lab Med. 2016;4:62–75.CrossRefGoogle Scholar
  28. 28.
    Twerenbold R, Boeddinghaus J, Nestelberger T, Wildi K, Rubini Gimenez M, Badertscher P, et al. Clinical use of high-sensitivity cardiac troponin in patients with suspected myocardial infarction. J Am Coll Cardiol. 2017;70:996–1012.CrossRefGoogle Scholar
  29. 29.
    Eikelboom JW, Connolly SJ, Bosch J, Dagenais GR, Hart RG, Shestakovska O, et al. Rivaroxaban with or without aspirin in stable cardiovascular disease. N Engl J Med. 2017;377:1319–30.CrossRefGoogle Scholar
  30. 30.
    Sherwood MW, Kristin Newby L. High-sensitivity troponin assays: evidence, indications, and reasonable use. J Am Heart Assoc. 2014;3:e000403.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Chapman AR, Hesse K, Andrews JPM, Lee KK, Anand A, Ferry A, et al. High-sensitivity cardiac troponin I and clinical risk scores in patients with suspected acute coronary syndrome. Eur Heart J [Internet]. 2018 [cited 2018 Sep 12];39. Available from:  https://doi.org/10.1093/eurheartj/ehy565.1085/5079282
  32. 32.
    Braunwald E. Heart failure. JACC Heart Fail. 2013;1:1–20.CrossRefGoogle Scholar
  33. 33.
    Hollinger A, Cerlinskaite K, Bastian K, Mebazaa A. Biomarkers of increased intraventricular pressure: are we ready? Eur Heart J Suppl. 2018;20:G21–7.CrossRefGoogle Scholar
  34. 34.
    Rodriguez D, Garcia-Rivas G, Laresgoiti-Servitje E, Yañez J, Torre-Amione G, Jerjes-Sanchez C. B-type natriuretic peptide reference interval of newborns from healthy and pre-eclamptic women: a prospective, multicentre, cross-sectional study. BMJ Open. 2018;8:e022562.CrossRefGoogle Scholar
  35. 35.
    Mair J, Lindahl B, Giannitsis E, Huber K, Thygesen K, Plebani M, et al. Will sacubitril-valsartan diminish the clinical utility of B-type natriuretic peptide testing in acute cardiac care? Eur Heart J Acute Cardiovasc Care. 2017;6:321–8.CrossRefGoogle Scholar
  36. 36.
    Kim H-N, Januzzi JL. Natriuretic peptide testing in heart failure. Circulation. 2011;123:2015–9.CrossRefGoogle Scholar
  37. 37.
    Apple FS. Quality specifications for B-type natriuretic peptide assays. Clin Chem. 2005;51:486–93.CrossRefGoogle Scholar
  38. 38.
    Weber M. Role of B-type natriuretic peptide (BNP) and NT-proBNP in clinical routine. Heart. 2005;92:843–9.CrossRefGoogle Scholar
  39. 39.
    Apple FS, Wu AHB, Jaffe AS, Panteghini M, Christenson RH, Christenson RH, et al. National Academy of Clinical Biochemistry and IFCC Committee for standardization of markers of cardiac damage laboratory medicine practice guidelines: analytical issues for biomarkers of heart failure. Circulation. 2007;116:e95–8.CrossRefGoogle Scholar
  40. 40.
    Kim H-L, Kim M-A, Choi D-J, Han S, Jeon E-S, Cho M-C, et al. Gender difference in the prognostic value of N-terminal pro-B type natriuretic peptide in patients with Heart Failure — a report from the Korean Heart Failure registry (KorHF) —. Circ J. 2017;81:1329–36.CrossRefGoogle Scholar
  41. 41.
    Gaggin H, Januzzi J Jr. Cardiac Biomarkers and Heart Failure [Internet]. Am Coll Cardiol. 2015;. [cited 2018 Sep 12]. Available from: https://www.acc.org/latest-in-cardiology/articles/2015/02/09/13/00/cardiac-biomarkers-and-heart-failure
  42. 42.
    Quintanilla J, Jerjes-Sanchez C, Perez L, Valdes F, Jimenez V, Trevino AR, et al. Intermediate- to high-risk pulmonary embolism with normal B-type natriuretic peptide. Am J Emerg Med. 2016;34:2463.e1–3.CrossRefGoogle Scholar
  43. 43.
    Januzzi JL, Chen-Tournoux AA, Christenson RH, Doros G, Hollander JE, Levy PD, et al. N-terminal pro–B-type natriuretic peptide in the emergency department. J Am Coll Cardiol. 2018;71:1191–200.CrossRefGoogle Scholar
  44. 44.
    Baggish AL, van Kimmenade RRJ, Januzzi JL. The differential diagnosis of an elevated amino-terminal pro–B-type natriuretic peptide level. Am J Cardiol. 2008;101:S43–8.CrossRefGoogle Scholar
  45. 45.
    Jespersen CM, Fischer Hansen J. Myocardial stress in patients with acute cerebrovascular events. Cardiology. 2008;110:123–8.CrossRefGoogle Scholar
  46. 46.
  47. 47.
    Giannitsis E, Mair J, Christersson C, Siegbahn A, Huber K, Jaffe AS, et al. How to use D-dimer in acute cardiovascular care. Eur Heart J Acute Cardiovasc Care. 2017;6:69–80.CrossRefGoogle Scholar
  48. 48.
    Zucker M. D-dimer for the exclusion of venous thromboembolism. Lab Med. 2011;42:503–4.CrossRefGoogle Scholar
  49. 49.
    Hahne K, Lebiedz P, Breuckmann F. Impact of D-Dimers on the differential diagnosis of acute chest pain: current aspects besides the widely known. Clin Med Insights Cardiol [Internet]. 2014 [cited 2018 Sep 13];8s2. Available from:  https://doi.org/10.4137/CMC.S15948CrossRefGoogle Scholar
  50. 50.
    Vazquez-Garza E, Jerjes-Sanchez C, Navarrete A, Joya-Harrison J, Rodriguez D. Venous thromboembolism: thrombosis, inflammation, and immunothrombosis for clinicians. J Thromb Thrombolysis. 2017;44:377–85.CrossRefGoogle Scholar
  51. 51.
    Linkins L-A, Takach Lapner S. Review of D-dimer testing: good, bad, and ugly. Int J Lab Hematol. 2017;39:98–103.CrossRefGoogle Scholar
  52. 52.
    Sadosty AT, Goyal DG, Boie ET, Chiu CK. Emergency department D-dimer testing. J Emerg Med. 2001;21:423–9.CrossRefGoogle Scholar
  53. 53.
    Cohen A, Ederhy S, Meuleman C, Di Angelantonio E, Dufaitre G, Boccara F. D-dimers in atrial fibrillation: a further step in risk stratification of thrombo-embolism? Eur Heart J. 2007;28:2179–80.CrossRefGoogle Scholar
  54. 54.
    Riley RS, Gilbert AR, Dalton JB, Pai S, McPherson RA. Widely used types and clinical applications of D-dimer assay. Lab Med. 2016;47:90–102.CrossRefGoogle Scholar
  55. 55.
    Akgul O, Uyarel H, Pusuroglu H, Gul M, Isiksacan N, Turen S, et al. Predictive value of elevated D-dimer in patients undergoing primary angioplasty for ST elevation myocardial infarction. Blood Coagul Fibrinolysis. 2013;24:704–10.CrossRefGoogle Scholar
  56. 56.
    Milhem A, Ingrand P, Tréguer F, Cesari O, Da Costa A, Pavin D, et al. Exclusion of Intra-Atrial Thrombus Diagnosis Using D-Dimer Assay Before Catheter Ablation of Atrial Fibrillation. JACC Clin Electrophysiol [Internet]. 2018 [cited 2018 Nov 12]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S2405500X18307904.
  57. 57.
    Alons IME, Jellema K, Wermer MJH, Algra A. D-dimer for the exclusion of cerebral venous thrombosis: a meta-analysis of low risk patients with isolated headache. BMC Neurol [Internet]. 2015 [cited 2018 Nov 12];15:118. Available from:  https://doi.org/10.1186/s12883-015-0389-y.
  58. 58.
    Takach Lapner S, Stevens SM, Woller SC, Snow G, Kearon C. Age-adjusted versus clinical probability-adjusted D-dimer to exclude pulmonary embolism. Thromb Res. 2018;167:15–9.CrossRefGoogle Scholar
  59. 59.
    Jerjes-Sanchez C, Rodriguez D, Navarrete A, Parra-Cantu C, Joya-Harrison J, Vazquez E, et al. Inferior vena cava filters in pulmonary embolism: a historic controversy. Arch Cardiol México. 2017;87:155–66.CrossRefGoogle Scholar
  60. 60.
    Marik PE, Plante LA. Venous thromboembolic disease and pregnancy. N Engl J Med. 2008;359:2025–33.CrossRefGoogle Scholar
  61. 61.
    Pulivarthi S, Gurram MK. Effectiveness of D-dimer as a screening test for venous thromboembolism: an update. North Am J Med Sci. 2014;6:491.CrossRefGoogle Scholar
  62. 62.
    Thompson B, Kabrhel C, Pena C. Clinical presentation, evaluation, and diagnosis of the nonpregnant adult with suspected acute pulmonary embolism – UpToDate [Internet]. 2018 [cited 2018 Sep 13]. Available from: https://www.uptodate.com/contents/clinical-presentation-evaluation-and-diagnosis-of-the-nonpregnant-adult-with-suspected-acute-pulmonary-embolism?search=d-dimer&source=search_result&selectedTitle=2~150&usage_type=default&display_rank=2#H746822394.
  63. 63.
    Zehtabchi S, Kline JA. The art and science of probabilistic decision-making in emergency medicine. Acad Emerg Med. 2010;17:521–3.CrossRefGoogle Scholar
  64. 64.
    McGee S. Chapter 2 – diagnostic accuracy of physical findings. In: McGee S, editor. Evidence-based physical diagnosis [Internet]. 3rd ed. Philadelphia: W.B. Saunders; 2012. p. 9–21. Available from: http://www.sciencedirect.com/science/article/pii/B9781437722079000021.CrossRefGoogle Scholar
  65. 65.
    Fagan T. Nomogram for Bayes’s theorem. N Engl J Med 1975;293:257.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto de Cardiología y Medicina Vascular, TecSalud, Escuela de Medicina y Ciencias de la Salud, Tecnológico de MonterreySan Pedro Garza GarcíaMéxico
  2. 2.Centro de Investigación Biomédica del Hospital Zambrano Hellion, TecSalud, Escuela de Medicina y Ciencias de la Salud, Tecnológico de MonterreySan Pedro Garza GarcíaMéxico

Personalised recommendations