Orbital Implants

  • David R. Jordan
  • Stephen R. Klapper


Loss of an eye to tumor, trauma, or end-stage ocular disease may be devastating. There is a loss of binocular vision, reduced peripheral visual field, and loss of depth perception. Job limitations may arise, and affected individuals may experience a sense of facial disfigurement. Because eye contact is such an essential part of human interaction, it is extremely important for the anophthalmic patient to maintain a natural appearing prosthetic eye. In the past two decades, there have been numerous developments and refinements in anophthalmic socket surgery with respect to implant material and design, implant wrapping, implant-prosthesis coupling, and socket volume considerations. It has become increasingly possible to provide most anophthalmic patients with an artificial eye that looks and moves quite naturally and in some cases almost as normally as the unaffected contralateral eye.


Orbital implants Enucleation Hydroxyapatite Porous polyethylene Aluminum oxide Implant wrapping Implant pegging Anophthalmic surgery 


  1. 1.
    Coday MP, Warner MA, Jarling KV, et al. Acquired monocular vision, functional consequences form the patients perspective. Ophthalmic Plast Reconstr Surg. 2002;18:55–63.Google Scholar
  2. 2.
    Bohman E, Roed Rassmussen ML, Dafgard Kopp E. Pain and discomfort in the anophthalmic socket. Curr Opin Ophthalmol. 2014;25:455–60.PubMedGoogle Scholar
  3. 3.
    Rasmussen ML, Ekholm O, Prause JU, et al. Quality of life of eye amputated patients. Acta Ophthalmol. 2012;90:435–40.PubMedGoogle Scholar
  4. 4.
    Ahn JM, Lee SY, Yoon JS. Health related quality of life and emotional status of anophthalmic patients in Korea. Am J Ophthalmol. 2010;149:1005–11.PubMedGoogle Scholar
  5. 5.
    Masdottir S, Sahlin S. Patient satisfaction and results after evisceration with a split-sclera technique. Orbit. 2007;26:241–7.PubMedGoogle Scholar
  6. 6.
    McBain HB, Ezra DG, Rose GE, et al. The psychological impact of living with an ocular prosthesis. Orbit. 2014;33:33–9.Google Scholar
  7. 7.
    Jordan DR, Klapper SR, Mawn LA. Chapt 36: The anophthalmic socket and complications. In: Fay A, Dolamn P, editors. Diseases and disorders of the orbit and ocular adnexa. Edinburgh: Elsevier; 2017. p. 657–75.Google Scholar
  8. 8.
    Mules PH. Evisceration of the globe, with artificial vitreous. Trans Ophthalmol Soc UK. 1885;5:200–6.Google Scholar
  9. 9.
    Gougelmann HP. The evolution of the ocular motility implant. Int Ophthalmol Clin. 1970;10(4):689–711.Google Scholar
  10. 10.
    Kelley JJ. History of ocular prosthesis. Int Ophthalmol Clin. 1970;10(4):713–9.Google Scholar
  11. 11.
    Luce CM. A short history of enucleation. Int Clinics North America Int Ophthalmol Clin. 1970;10:681–7.Google Scholar
  12. 12.
    Cutler NL. A positive contact ball and ring implant for use after enucleation. Arch Ophthalmol. 1947;37:73–8.Google Scholar
  13. 13.
    Beard C. Remarks on historical and newer approaches to orbital implants. Ophthalmic Plast Reconstr Surg. 1995;11(2):89–90.PubMedGoogle Scholar
  14. 14.
    Allen JH, Allen L. A buried muscle cone implant: development of a tunneled hemispherical type. Arch Ophthalmol. 1950;43:879–90.Google Scholar
  15. 15.
    Allen LH, Ferguson EC III, Braley AE. A quasi integrated buried muscle cone implant with good motility and advantages for prosthetic fitting. Trans Am Acad Ophthalmol Otolaryngol. 1960;64:272–8.PubMedGoogle Scholar
  16. 16.
    Spivey BE, Allen LH, Burns CA. The Iowa enucleation implant: a ten year evaluation of techniques and results. Am J OPhthalmol. 1969;67:171–81.PubMedGoogle Scholar
  17. 17.
    Jordan DR, Anderson RL, Nerad JA, et al. A preliminary report on the universal implant. Arch Ophthalmol. 1987;105:1726–31.PubMedGoogle Scholar
  18. 18.
    Hornblass A, Biesman BS, Eviator JA. Current techniques of enucleation: a survey of 5,439 intraorbital implants and a review of the literature. Ophthalmic Plast Reconstr Surg. 1995;11:77–88.PubMedGoogle Scholar
  19. 19.
    Perry AC. Advances in enucleation. Ophthal Clin North Am. 1991;4:173–82.Google Scholar
  20. 20.
    Dutton JJ. Coralline hydroxyapatite as an ocular implant. Ophthalmology. 1991;98:370–7.PubMedGoogle Scholar
  21. 21.
    Nunery WR, Heinz GW, Bonnin JM, et al. Exposure rate of hydroxyapatite spheres in the anophthalmic socket: histopathologic correlation and comparison with silicone sphere implants. Ophthalmic Plast Reconstr Surg. 1993;9:96–104.PubMedGoogle Scholar
  22. 22.
    Goldberg RA, Holds JB, Ebrahimpour J. Exposed hydroxyapatite orbital implants: report of six cases. Ophthalmology. 1992;99:831–6.PubMedGoogle Scholar
  23. 23.
    Buettner H, Bartley GB. Tissue breakdown and exposure associated with orbital hydroxyapatite implants. Am J Ophthalmol. 1992;113:669–73.PubMedGoogle Scholar
  24. 24.
    Kim YD, Goldberg RA, Shorr N, et al. Management of exposed hydroxyapatite orbital implants. Ophthalmology. 1994;101:1709–15.PubMedGoogle Scholar
  25. 25.
    Remulla HD, Rubin PAD, Shore JW, et al. Complications of porous spherical orbital implants. Ophthalmology. 1995;102:586–93.PubMedGoogle Scholar
  26. 26.
    Oestreicher JH, Liu E, Berkowitz M. Complications of hydroxyapatite orbital implants: a review of 100 consecutive cases and a comparison of Dexon mesh (polyglycolic acid) with scleral wrapping. Ophthalmology. 1997;104:324–9.PubMedGoogle Scholar
  27. 27.
    Jordan DR, Brownstein S, Jolly SS. Abscessed hydroxyapatite orbital implants: a report of two cases. Ophthalmology. 1996;103:1784–7.PubMedGoogle Scholar
  28. 28.
    Blaydon SM, Shepler TR, Neuhaus RW, et al. The porous polyethylene (Medpor) spherical orbital implant: a retrospective study of 136 cases. Ophthalmic Plast Reconstr Surg. 2003;19:364–74.PubMedGoogle Scholar
  29. 29.
    Karesh JW, Dresner SC. High density porous polyethylene (Medpor) as a successful anophthalmic implant. Ophthalmology. 1994;101:1688–96.PubMedGoogle Scholar
  30. 30.
    Rubin PAD, Popham J, Rumeldts S, et al. Enhancement of the cosmetic and functional outcomes of enucleation with the conical orbital implant. Ophthalmology. 1998;105:919–25.PubMedGoogle Scholar
  31. 31.
    Anderson RL, Yen MT, Lucci LM, et al. The quasi-integrated porous polyethylene orbital implant. Ophthalmic Plast Reconstr Surg. 2002;18:50–5529.PubMedGoogle Scholar
  32. 32.
    Mawn LA, Jordan DR, Gilberg S. Proliferation of human fibroblasts in vitro after exposure to orbital implants. Can J Ophthalmol. 2001;36:245–51.PubMedGoogle Scholar
  33. 33.
    Ma Y, Schou KR, Maloney-Schou M, et al. The porous polyethylene/Bioglass spherical orbital implant: a retrospective study of 170 cases. Ophthalmic Plast Reconstr Surg. 2011;27:21–7.PubMedGoogle Scholar
  34. 34.
    Mawn L, Jordan DR, Gilberg S. Scanning electron microscopic examination of porous orbital implants. Can J Ophthalmol. 1998;33:203–9.PubMedGoogle Scholar
  35. 35.
    Jordan DR, Munro SM, Brownstein S, et al. A synthetic hydroxyapatite implant: the so-called counterfeit implant. Ophthalmic Plast Reconstr Surg. 1998;14(4):244–9.PubMedGoogle Scholar
  36. 36.
    Jordan DR, Bawazeer A. Experience with 120 synthetic hydroxyapatite implants (FCI3). Ophthalmic Plast Reconstr Surg. 2001;17:184–90.PubMedGoogle Scholar
  37. 37.
    Jordan DR, Pelletier C, Gilberg SM, et al. A new variety of hydroxyapatite: the Chinese Implant. Ophthalmic Plast Reconstr Surg. 1999;15(6):420–4.PubMedGoogle Scholar
  38. 38.
    Jordan DR, Hwang I, McEachren TM, et al. Brazilian hydroxyapatite implant. Ophthalmic Plast Reconstr Surg. 2000;16:363–9.PubMedGoogle Scholar
  39. 39.
    Jordan DR, Brownstein S, Gilberg S, et al. Investigation of a bioresorbable orbital implant. Ophthalmic Plast Reconstr Surg. 2002;18:342–8.PubMedGoogle Scholar
  40. 40.
    Klett A, Guthoff R. Deckung von Orbitaimplantaten mit muskelgestielter autologer sklera. Ophthalmologe. 2003;100:449–52.PubMedGoogle Scholar
  41. 41.
    Christel P. Biocompatibility of alumina. Clin Orthop. 1992;282:10–8.Google Scholar
  42. 42.
    Jordan DR, Mawn L, Brownstein S, et al. The bioceramic orbital implant: a new generation of porous implants. Ophthalmic Plast Reconstr Surg. 2000;16:347–55.PubMedGoogle Scholar
  43. 43.
    Jordan DR, Gilberg S, Mawn LA. The bioceramic orbital implant: experience with 107 implants. Ophthalmic Plast Reconstr Surg. 2003;19:128–35.PubMedGoogle Scholar
  44. 44.
    Jordan DR, Klapper SK, Gilberg SM, et al. The bioceramic implant: evaluation of implant exposures in 419 implants. Ophthalmic Plast Reconstr Surg. 2010;26:80–2.PubMedGoogle Scholar
  45. 45.
    Wang JK, Lai PC, Liao SL. Late exposure of the bioceramic orbital implant. Am J Ophthalmol. 2009;147:162–70.PubMedGoogle Scholar
  46. 46.
    Karslioglu SK, Buttanri IB, Fazil K, et al. Long-term outcomes of pegged and unpegged bioceramic orbital implants. Ophthalmic Plast Reconstr Surg. 2012;28:264–7.PubMedGoogle Scholar
  47. 47.
    Jordan DR, Gilberg SM, Bawazeer A. The coralline hydroxyapatite orbital implant (Bio-Eye): experience with 170 Patients. Ophthalmic Plast Reconstr Surg. 2004;20(1):69–71.PubMedGoogle Scholar
  48. 48.
    Jordan DR. Anophthalmic orbital implants. Ophthal Clinics North Am. 2000;13(4):587–608.Google Scholar
  49. 49.
    Integrated Orbital Implants, Inc. advertisement. Ophthalmic Plast Reconstr Surg. 2017;33:2:1.Google Scholar
  50. 50.
    Jordan DR, Brownstein S, Faraji H. Clinicopathologic analysis of 15 explanted hydroxyapatite implants. Ophthalmic Plast Reconstr Surg. 2004;20(4):285–90.PubMedGoogle Scholar
  51. 51.
    Jordan DR, Chan S, Mawn L, et al. Complications associated with pegging hydroxyapatite orbital implants. Ophthalmology. 1999;106:505–12.PubMedGoogle Scholar
  52. 52.
    Custer PL, Trinkhaus KM. Porous implant exposure: incidence, management and morbidity. Ophthalmic Plast Reconstr Surg. 2007;23:1:1–7.Google Scholar
  53. 53.
    Su GW, Yen MT. Current trends in managing the anophthalmic socket after primary enucleation and evisceration. Ophthalmic Plast Reconstr Surg. 2004;20(4):274–80.PubMedGoogle Scholar
  54. 54.
    Goldberg RA. Who should have hydroxyapatite orbital implants? Arch Ophthalmol. 1995;113:566–7.PubMedGoogle Scholar
  55. 55.
    Codere F. Hydroxyapatite implants: a rational approach. Can J Ophthalmol. 1995;30:235–7.PubMedGoogle Scholar
  56. 56.
    Jordan DR. Porous orbital implants; are they advantageous and anyone still pegging? American Society of Ophthalmic Plastic and Reconstructive Surgery meeting, Fairmont, Waterfront Hotel, Vancouver, British Columbia, June 23–25, 2017.Google Scholar
  57. 57.
    Allen L. The argument against imbricating the rectus muscles over spherical orbital implants after enucleation. Ophthalmology. 1983;90:1116–20.PubMedGoogle Scholar
  58. 58.
    Trichopoulos N, Augsberger JJ. Enucleation with unwrapped porous and nonporous orbital implants: a 15-year experience. Ophthal Plast Reconst Surg. 2005;21(5):331–6.Google Scholar
  59. 59.
    Nunery WR, Cepela MA, Heinz GW, et al. Extrusion rate of silicone spherical anophthalmic socket implants. Ophthalmic Plast Reconstr Surg. 1993;9:290–4.Google Scholar
  60. 60.
    Wells ST, Harris GJ. Direct fixation of extraocular muscles to a silicone sphere: a cost-sensitive, low risk enucleation procedure. Ophthalmic Plast Reconstr Surg. 2011;27:364–7.PubMedGoogle Scholar
  61. 61.
    Wladis EI, Aakalu VK, Sobel RK, et al. Orbital implants in enucleation surgery; a report by the American Academy of Ophthalmology. Ophthalmol 2017; 2017. pii: S0161–6420(17)32438–7. [Epub ahead of print].
  62. 62.
    Sagoo MS, Rose GE. Mechanisms and treatment of extruding intraconal implants. Arch Ophthalmol. 2007;125(12):1116–620.Google Scholar
  63. 63.
    Custer PL, Trinkaus KM, Fornoff J. Comparative motility of hydroxyapatite and alloplastic enucleation implants. Ophthalmology. 1999;106:513–6.PubMedGoogle Scholar
  64. 64.
    Guillinta P, Vasani SN, Granet DB, et al. Prosthetic motility in pegged and unpegged integrated porous orbital implants. Ophthalmic Plast Reconstr Surg. 2000;19:119–22.Google Scholar
  65. 65.
    Colen TP, Paridaens DA, Lemij HG, et al. Comparison of artificial eye amplitudes with acrylic and hydroxyapatite spherical enucleation implants. Ophthalmology. 2000;107:1889–94.PubMedGoogle Scholar
  66. 66.
    Guillinta P, Vasani SN, Granet DB, et al. Prosthetic motility in pegged versus unpegged integrated porous orbital implants. Ophthalmic Plast Reconstr Surg. 2000;19:119–22.Google Scholar
  67. 67.
    Custer PL, Kennedy RH, Woog JJ, et al. Orbital implants in enucleation surgery, a report by the American Academy of Ophthalmology. Ophthalmology. 2003;110:2054–61.PubMedGoogle Scholar
  68. 68.
    Bentley RP, Sgouros S, Natarajan K, et al. Normal changes in orbital volume during childhood. J Neurosurg. 2002;96:742–6.PubMedGoogle Scholar
  69. 69.
    Yago K, Furuta M. Orbital growth after unilateral enucleation in infancy without an orbital implant. Jpn J Ophthalmol. 2001;45:648–52.PubMedGoogle Scholar
  70. 70.
    Heber KL, Katowitz JA, Low JE. Unilateral dermis-fat graft implantation in the pediatric orbit. Ophthalmic Plast Reconstr Surg. 1998;14:81–8.Google Scholar
  71. 71.
    Mitchell KT, Holster DA, White WL. The autogenous dermis-fat orbital implant in children. J AAPOS. 2001;5:367–9.PubMedGoogle Scholar
  72. 72.
    Kaltreider SA. The ideal ocular prosthesis: analysis of prosthetic volume. Ophthalmic Plast Reconstr Surg. 2000;16:388–92.PubMedGoogle Scholar
  73. 73.
    Kaltreider SA, Lucarelli MJ. A simple algorithm for selection of implant size for enucleation and evisceration. Ophthalmic Plast Reconstr Surg. 2002;18:336–41.PubMedGoogle Scholar
  74. 74.
    Custer PL, Trinkaus KM. Volumetric determination of enucleation implant size. Am J Ophthalmol. 1999;128:489–94.PubMedGoogle Scholar
  75. 75.
    Thaller VT. Enucleation volume measurement. Ophthalmic Plast Reconstr Surg. 1997;13:18–20.PubMedGoogle Scholar
  76. 76.
    Kaltreider SA, Jacobs JL, Hughes MO. Predicting the ideal implant size before enucleation. Ophthalmic Plast Reconstr Surg. 1999;15(3):37–43.PubMedGoogle Scholar
  77. 77.
    Trichopoulas N, Augsburger JJ. enucleation with unwrapped porous and non-porous implants: a 15 year experience. Ophthalmic Plast Reconstr Surg. 2005;21:331–6.Google Scholar
  78. 78.
    Perry JD. Hydroxyapatite implants (letter). Ophthalmology. 2003;110:1281.PubMedGoogle Scholar
  79. 79.
    Long JA, Tann TM, Bearden WH, et al. Enucleation: is wrapping the implant necessary for optimal motility. Ophthalmic Plast Reconstr Surg. 2003;19(3):194–7.PubMedGoogle Scholar
  80. 80.
    Suter AJ, Molteno AC, Becin TH, et al. Long term follow-up of bone derived hydroxyapatite orbital implants. Br J Ophthalmol. 2002;86:1287–992.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Nunery WR. Risk of prion transmission with the use of xenografts and allografts in surgery. Ophthalmic Plast Reconstr Surg. 2003;17:389–94.Google Scholar
  82. 82.
    Seiff SR, Chang JS Jr, Hurt MH, et al. Polymerase chain reaction identification of human immunodeficiency virus-1 in preserved human sclera. Am J Ophthalmol. 1994;118:528–9.PubMedGoogle Scholar
  83. 83.
    Long CJ, Heckman JG, Neunderfer B. Creutzfeldt-Jakob disease via dural and corneal transplants. J Neurol Sci. 1998;160:128–39.Google Scholar
  84. 84.
    Hogan RN, Brown P, Heck E, et al. risk of prion disease transmission from ocular donor tissue transplantation. Cornea. 1999;18:2–11.PubMedGoogle Scholar
  85. 85.
    Heckman JG, Lang CJ, Petruch F, et al. Transmission of Creutzfeldt-Jakob disease via a corneal transplant. J Neurol Neurosurg Psychiatry. 1997;63:388–90.Google Scholar
  86. 86.
    Simonds RJ, Holmberg SD, Hurwitz RL, et al. Transmission of human immunodeficiency virus type 1 from a seronegative organ and tissue donor. N Engl J Med. 1992;326:726–32.PubMedGoogle Scholar
  87. 87.
    Arat YO, Shetlar DJ, Boniuk M. Bovine pericardium versus homologous sclera as a wrapping for hydroxyapatite orbital implants. Ophthalmic Plast Reconstr Surg. 2003;19:189–93.PubMedGoogle Scholar
  88. 88.
    Gayre GS, DeBacker CM, Lipham W, et al. Bovine pericardium as a wrapping for orbital implants. Ophthalmic Plast Reconstr Surg. 2001;17:381–7.PubMedGoogle Scholar
  89. 89.
    Pelletier C, Gilberg S, Jordan DR. Use of Temporalis fascia for management of exposed hydroxyapatite implants. Ophthalmic Plast Reconstr Surg. 1998;198-203(1998):14.Google Scholar
  90. 90.
    Naugle TC Jr, Fry CL, Sabatier RE, et al. High leg incision fascia lata harvesting. Ophthalmology. 1997;104:1480–8.PubMedGoogle Scholar
  91. 91.
    Kao SCS, Chen S. The use of rectus abdominis sheath for wrapping of the hydroxyapatite orbital implants. Ophthalmic Surg Lasers. 1999;30:69–71.PubMedGoogle Scholar
  92. 92.
    Naugle TC Jr, Lee AM, Haik BG, et al. Wrapping hydroxyapatite orbital implants with posterior auricular muscle complex grafts. Am J Ophthalmol. 1999;128:495–501.PubMedGoogle Scholar
  93. 93.
    Karesh JW. Polytetrafluoroethylene as a graft material in ophthalmic plastic and reconstructive surgery: an experimental and clinical study. Ophthalmic Plast Reconstr Surg. 1987;3:179–85.PubMedGoogle Scholar
  94. 94.
    Choo PH, Carter SR, Crawford JB, et al. Exposure of expanded polytetrafluoroethylene-wrapped hydroxyapatite orbital implant: a report of two patients. Ophthalmic Plast Reconstr Surg. 1999;15:77–8.PubMedGoogle Scholar
  95. 95.
    Kao L. Polytetrafluoroethylene as a wrapping material for a hydroxyapatite orbital implant. Ophthalmic Plast Reconstr Surg. 2000;16:286–8.PubMedGoogle Scholar
  96. 96.
    Jordan DR, Allen LH, Ells A, et al. The use of vicryl mesh (polyglactin 910) for implantation of hydroxyapatite orbital implants. Ophthalmic Plast Reconstr Surg. 1995;11:95–9.PubMedGoogle Scholar
  97. 97.
    Jordan DR, Ells A, Brownstein S, et al. Vicryl-mesh wrap for the implantation of hydroxyapatite orbital implants:an animal model. Can J Ophthalmol. 1995;30:241–6.PubMedGoogle Scholar
  98. 98.
    Klapper SR, Jordan DR, Punja K, et al. Hydroxyapatite implant wrapping materials: analysis of fibrovascular ingrowth in an animal model. Ophthalmic Plast Reconstr Surg. 2000;16:278–85.PubMedGoogle Scholar
  99. 99.
    Gayre GS, Lipham W, Dutton JJ. A comparison of rates of fibrovascular ingrowth in wrapped versus unwrapped hydroxyapatite spheres in a rabbit model. Ophthalmic Plast Reconstr Surg. 2002;18:275–28.PubMedGoogle Scholar
  100. 100.
    Jordan DR, Klapper SR, Gilberg SM. The use of vicryl mesh in 200 porous orbital implants. Ophthalmic Plast Reconstr Surg. 2003;19:53–61.PubMedGoogle Scholar
  101. 101.
    Custer PL. Enucleation: past, present, and future. Ophthalmic Plast Reconstr Surg. 2000;16:316–21.PubMedGoogle Scholar
  102. 102.
    Custer PL. Reply to Dr. D.R. Jordan’s letter on polyglactin mesh wrapping of hydroxyapatite implants. Ophthalmic Plast Reconstr Surg. 2001;17:222–3.Google Scholar
  103. 103.
    Edelstein C, Shields CL, DePotter P, et al. Complications of motility peg placement for the hydroxyapatite orbital implant. Ophthalmology. 1997;104:1616–21.PubMedGoogle Scholar
  104. 104.
    Lin CJ, Lio SL, Jou JR, et al. Complications of motility peg placement for porous hydroxyapatite orbital implants. Br J Ophthalmol. 2002;86:394–6.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Jordan DR. Spontaneous loosening of hydroxyapatite peg sleeves. Ophthalmology. 2001;108:2041–4.PubMedGoogle Scholar
  106. 106.
    Cheng MS, Lio SL, Lin L. Late porous polyethylene implant exposure after motility coupling post placement. Am J Ophthalmol. 2004;138:420–4.PubMedGoogle Scholar
  107. 107.
    Lee SY, Jang JW, Lew H, et al. Complications in motility peg placement for hydroxyapatite orbital implants in anophthalmic socket. Jpn J Ophthalmol. 2002;46:103–7.PubMedGoogle Scholar
  108. 108.
    Jordan DR, Klapper SR. A new titanium peg system for hydroxyapatite orbital implants. Ophthalmic Plast Reconstr Surg. 2000;16:380–7.PubMedGoogle Scholar
  109. 109.
    Johnson RLC, Ramstead CL, Nathoo N. Ophthalmic Plast Reconstr Surg. 2011;27:74–5.PubMedGoogle Scholar
  110. 110.
    Ainbinder DJ, Haik BG, Tellado M. Hydroxyapatite orbital implant abscess: histopathologic correlation of an infected implant following evisceration. Ophthalmic Plast Reconstr Surg. 1994;10:267–70.PubMedGoogle Scholar
  111. 111.
    Klapper SR, Jordan DR, Ells A, et al. Hydroxyapatite orbital implant vascularization assessed by magnetic resonance imaging. Ophthalmic Plast Reconstr Surg. 2003;19:46–5.PubMedGoogle Scholar
  112. 112.
    Cook S, Dalton J. Biocompatibility and biofunctionality of implanted materials. Alpha Omegan. 1992;85:41–7.PubMedGoogle Scholar
  113. 113.
    Choi JC, Iwamoto MA, Bstandig S, et al. Medpore motility coupling post: a rabbit model. Ophthalmic Plast Reconstr Surg. 1999;15:190–201.PubMedGoogle Scholar
  114. 114.
    Rubin PAD, Fay AM, Remulla HD. Primary placement of motility coupling post in porous polyethylene orbit implants. Arch Ophthalmol. 2000;118:826–32.PubMedGoogle Scholar
  115. 115.
    Hsu WC, Green JP, Spilker MH, et al. Primary placement of a titanium motility post in a porous polyethylene orbital implant. Ophthalmic Plast Reconstr Surg. 2003;16:370–9.Google Scholar
  116. 116.
    Tawfik HA, Dutton JJ. Primary peg placement in evisceration with the spherical porous polyethylene orbital implant. Ophthalmology. 2004;111:1401–6.PubMedGoogle Scholar
  117. 117.
    Timothy NH, Feilich DE, Linberg JV. Perspective: evisceration versus enucleation, the ocularists standpoint. Ophthalmic Plast Reconstr Surg. 2003;19(6):417–20.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David R. Jordan
    • 1
  • Stephen R. Klapper
    • 2
  1. 1.Department of OphthalmologyUniversity of Ottawa Eye Institute and the Ottawa HospitalOttawaCanada
  2. 2.Klapper Eyelid and Facial SurgeryCarmelUSA

Personalised recommendations