Advertisement

Suboptimal Health Status and Cardiovascular Deficits

  • Wei Wang
  • Xuerui Tan
Chapter
Part of the Advances in Predictive, Preventive and Personalised Medicine book series (APPPM, volume 11)

Abstract

Suboptimal Health Status (SHS) is the subclinical, reversible stage of pre-chronic disease. It is the physical state between health and disease, characterised by the perception of health complaints, general weakness, chronic fatigue and low energy levels. We have developed a tool to measure SHS, Suboptimal Health Status Questionnaire-25 (SHSQ-25) which assesses five components of health: (1) fatigue, (2) the cardiovascular system, (3) the digestive tract, (4) the immune system, and (5) mental status. To date, the SHSQ-25 as a self-reported survey instrument has been validated in various populations, including African, Chinese and Caucasians, therefore generating an unprecedented opportunity for the early detection of chronic health conditions, namely, cardiovascular diseases and diabetes. Our studies suggest that SHS is associated with the major components of cardiovascular health. We investigated the association between SHS and cardiovascular health metrics (defined by American Heart Association) among Chinese. Participants in the largest quartile of ideal cardiovascular health (CVH) metrics showed a lower likelihood of having on optimal SHS score compared to those in the smallest quartile after adjusting for socio-demographic factors (age, gender, marital status, alcohol consumption, income level and education). Four metrics (smoking, physical inactivity, poor dietary intake and ideal control of blood pressure) were significantly correlated with the risk of SHS. The study indicated that ideal CVH metrics were associated with a lower prevalence of SHS, and the combined evaluation of SHS and CVH metrics allows the risk classification of cardiovascular disease, consequently contributing to the prevention of cardiovascular diseases from a preventive, predicative and personalised medicine perspective (PPPM).

Keywords

Suboptimal health Questionnaire Cardiovascular deficits Fatigue Digestive tract Immune system Mental status Self-reported survey Chinese population Chronic health condition Chinese Socio-demographic factor Age Gender Marital status Alcohol consumption Income level Education Metrics Smoking Physical inactivity Poor dietary intake Blood pressure Risks classification Predictive preventive personalised medicine Innovation Strategy 

Notes

Acknowledgments

This book chapter was supported partially by the Joint Project of the Australian National Health and Medical Research Council (NHMRC) and the National Natural Science Foundation of China (NSFC) (NHMRC APP1112767-NSFC 81561128020), and NSFC (NSFC 81773527, 81673247, 81473057, 81370083, 81473063), and the European Commission (EC-H2020-SC1-779238 –PRODEMOS).

The authors acknowledge that parts of the data presented in this chapter have previously been published in our earlier articles [Yan YX et al. J Epideml 2009, 19(6):333–341 l; Wang W, & Yan Y. Clin Transl Med. 2012, 1 (1): 28; Yan YX et al. J Urban Health. 2012;89 (2):329-38; Wang W et al. EPMA J. 2014, 5 (1): 4; Kupaev Vet al. EPMA J. 2016; 7 (1):19; Wang Y et al. J Transl Med. 2016; 14 (1): 291; Adua E et al. EPMA J. 2017, 8 (4): 345-55; Wang Y et al. Sci Rep. 2017, 7 (1): 14975]. This chapter uses the original data but provides a new interpretation based on the innovative paradigm of predictive, preventive and personalised medicine.

The authors thank Miss Belinda Mosdell, Mr Hao Wang and Dr Manshu Song Edith Cowan University, for their English editing.

References

  1. 1.
    Wang W, Russell A, Yan Y (2014) Traditional Chinese medicine and new concepts of predictive, preventive and personalized medicine in diagnosis and treatment of suboptimal health. Global Health Epidemiology Reference Group (GHERG). EPMA J 5(1):4.  https://doi.org/10.1186/1878-5085-5-4 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yan YX, Liu YQ, Li M, Hu PF, Guo AM, Yang XH, et al (2009) Development and evaluation of a questionnaire for measuring suboptimal health status in urban Chinese. J Epidemiol 19(6):333–341CrossRefGoogle Scholar
  3. 3.
    Adua E, Roberts P, Wang W (2017) Incorporation of suboptimal health status as a potential risk assessment for type II diabetes mellitus: a case-control study in a Ghanaian population. EPMA J 8(4):345–355CrossRefGoogle Scholar
  4. 4.
    Alzain MA, Asweto CO, Zhang J, Fang H, Zhao Z, Guo X, et al (2017) Telomere length and accelerated biological aging in the China suboptimal health cohort: a case-control study. OMICS 21(6):333–339CrossRefGoogle Scholar
  5. 5.
    Kupaev V, Borisov O, Marutina E, Yan YX, Wang W (2016) Integration of suboptimal health status and endothelial dysfunction as a new aspect for risk evaluation of cardiovascular disease. EPMA J 7(1):19.  https://doi.org/10.1186/s13167-016-0068-0 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wang W, Yan Y (2012) Suboptimal health: a new health dimension for translational medicine. Clin Trans Med 1(1):28CrossRefGoogle Scholar
  7. 7.
    Wang Y, Ge S, Yan Y, Wang A, Zhao Z, Yu X, et al (2016) China suboptimal health cohort study: rationale, design and baseline characteristics. J Transl Med 14(1):291Google Scholar
  8. 8.
    Wang Y, Liu X, Qiu J, Wang H, Liu D, Zhao Z, et al (2017) Association between ideal cardiovascular health metrics and suboptimal health status in Chinese population. Sci Rep 7(1):14975Google Scholar
  9. 9.
    Yan YX, Dong J, Liu YQ, Yang XH, Li M, Shia G, Wang W (2012) Association of suboptimal health status and cardiovascular risk factors in urban Chinese workers. J Urban Health 89(2):329–338CrossRefGoogle Scholar
  10. 10.
    Yan YX, Wu LJ, Xiao HB, Wang S, Dong J, Wang W (2018) Latent class analysis to evaluate performance of plasma cortisol, plasma catecholamines, and SHSQ-25 for early recognition of suboptimal health status. EPMA J.  https://doi.org/10.1007/s13167-018-0144-8 CrossRefGoogle Scholar
  11. 11.
    Bermingham SL, Cohen A, Hague J, Parsonage M (2010) The cost of somatisation among the working-age population in England for the year 2008–2009. Ment Health Fam Med 7:71–84PubMedPubMedCentralGoogle Scholar
  12. 12.
    Hou HF, Feng X, Li Y, Meng Z, Guo D, Wang F, et al (2018) Suboptimal health status and psychological symptoms among Chinese college students: a perspective of predictive, preventive and personalised heath. EPMA J.  https://doi.org/10.1007/s13167-018-0148-413
  13. 13.
    Bi J, Huang Y, Xiao Y, Cheng J, Li F, Wang T, et al (2014) Association of lifestyle factors and suboptimal health status: a cross-sectional study of Chinese students. BMJ Open 4(6):e005156CrossRefGoogle Scholar
  14. 14.
    Chen J, Cheng J, Liu Y, Tang Y, Sun X, Wang T, et al (2014) Associations between breakfast eating habits and health-promoting lifestyle, suboptimal health status in Southern China: a population based, cross sectional study. J Transl Med 12:348Google Scholar
  15. 15.
    Wu S, Xuan Z, Li F, Xiao W, Fu X, Jiang P, et al (2016) Work-recreation balance, health-promoting lifestyles and suboptimal health status in Southern China: a cross-sectional study. Int J Environ Res Public Health 13(3):E339CrossRefGoogle Scholar
  16. 16.
    Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, et al (2010) Defining and setting national goals for cardiovascular health promotion and disease reduction: the american heart association’s strategic impact goal through 2020 and beyond. Circulation 121:586–613CrossRefGoogle Scholar
  17. 17.
    Chiuve SE, McCullough ML, Sacks FM, Rimm EB (2006) Healthy lifestyle factors in the primary prevention of coronary heart disease among men: benefits among users and nonusers of lipid-lowering and antihypertensive medications. Circulation 114:160–167CrossRefGoogle Scholar
  18. 18.
    Ford ES, Greenlund KJ, Hong Y (2012) Ideal cardiovascular health and mortality from all causes and diseases of the circulatory system among adults in the united states. Circulation 125:987–995CrossRefGoogle Scholar
  19. 19.
    Yan N, Zhou Y, Wang Y, Wang A, Yang X, Russell A, et al (2016) Association of ideal cardiovascular health and brachial-ankle pulse wave velocity: a cross-sectional study in Northern China. J Stroke Cerebrovasc Dis 25(1):41–48CrossRefGoogle Scholar
  20. 20.
    Zhang N, Yang Y, Wang A, Cao Y, Li J, Yang Y, et al (2016) Association of ideal cardiovascular health metrics and cognitive functioning: the APAC study. Eur J Neurol 23(9):1447–1454CrossRefGoogle Scholar
  21. 21.
    Lemke HU, Golubnitschaja O (2014) Towards personal health care with model-guided medicine: long-term PPPM-related strategies and realisation opportunities within ‘horizon 2020’. EPMA J 5(1):8CrossRefGoogle Scholar
  22. 22.
    Golubnitschaja O, Kinkorova J, Costigliola V (2014) Predictive, preventive and personalised medicine as the hardcore of ‘horizon 2020’: EPMA position paper. EPMA J 5(1):6CrossRefGoogle Scholar
  23. 23.
    Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M et al (2016) Medicine in the early twenty-first century: paradigm and anticipation-EPMA position paper 2016. EPMA J 7(1):23CrossRefGoogle Scholar
  24. 24.
    Golubnitschaja O (2010) Time for new guidelines in advanced diabetes care: paradigm change from delayed interventional approach to predictive, preventive & personalized medicine. EPMA J 1(1):3–12CrossRefGoogle Scholar
  25. 25.
    Chen J, Xiang H, Jiang P, Yu L, Jing Y, Li F, et al (2017) The role of healthy lifestyle in the implementation of regressing suboptimal health status among college students in China: a nested case-control study. Int J Environ Res Public Health 14(3):E240CrossRefGoogle Scholar
  26. 26.
    Zhang X, Yao S, Sun G, Yu S, Sun Z, Zhong L, et al (2012) Total and abdominal obesity among rural Chinese women and the association with hypertension. Nutrition 28(1):46–52CrossRefGoogle Scholar
  27. 27.
    Saladini F, Benetti E, Fania C, Mos L, Casiglia E, Palatini P (2016) Effects of smoking on central blood pressure and pressure amplification in hypertension of the young. Vasc Med 21(5):422–428CrossRefGoogle Scholar
  28. 28.
    Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, Board on the Health of Select Populations, Institute of Medicine (2015) Beyond myalgic encephalomyelitis/chronic fatigue syndrome: redefining an illness. National Academies Press (US), Washington, DCGoogle Scholar
  29. 29.
    Wyller VB, Barbieri R, Saul JP (2011) Blood pressure variability and closed-loop baroreflex assessment in adolescent chronic fatiguesyndrome during supine rest and orthostatic stress. Eur J Appl Physiol 111(3):497–507CrossRefGoogle Scholar
  30. 30.
    Guariguata L, Whiting D, Hambleton I, Beagley J, Linnenkamp U, Shaw J (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103(2):137–149CrossRefGoogle Scholar
  31. 31.
    Lindström J, Tuomilehto J (2003) The diabetes risk score. Diabetes Care 26(3):725–731CrossRefGoogle Scholar
  32. 32.
    Chen L, Magliano DJ, Zimmet PZ (2012) The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol 8(4):228–236CrossRefGoogle Scholar
  33. 33.
    Rich PA, Shaefer CF, Parkin CG, Edelman SV (2013) Using a quantitative measure of diabetes risk in clinical practice to target and maximize diabetes prevention interventions. Clin Diabetes 31(2):82–89CrossRefGoogle Scholar
  34. 34.
    Bi Y, Wang T, Xu M, Xu Y, Li M, Lu J, et al (2012) Advanced research on risk factors of type 2 diabetes. Diabetes Metab Res Rev 28(s2):32–39CrossRefGoogle Scholar
  35. 35.
    Stumvoll M, Goldstein BJ, van Haeften TW (2005) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365(9467):1333–1346CrossRefGoogle Scholar
  36. 36.
    DeFronzo RA, Abdul-Ghani M (2011) Type 2 diabetes can be prevented with early pharmacological intervention. Diabetes Care 34(Supplement 2):S202–S2S9CrossRefGoogle Scholar
  37. 37.
    Deepa M, Anjana R, Mohan V (2017) Role of lifestyle factors in the epidemic of diabetes: lessons learnt from India. Eur J Clin Nutr 71(7):825–831CrossRefGoogle Scholar
  38. 38.
    Hulsegge G, Spijkerman A, van der Schouw Y, Bakker SJ, Gansevoort R, Smit H et al (2017) Trajectories of metabolic risk factors and biochemical markers prior to the onset of type 2 diabetes: the population-based longitudinal Doetinchem study. Nutr Diabetes 7(5):e270CrossRefGoogle Scholar
  39. 39.
    Zou X, Zhou X, Ji L, Yang W, Lu J, Weng J, et al (2017) The characteristics of newly diagnosed adult early-onset diabetes: a population based cross-sectional study. Sci Rep 7:46534CrossRefGoogle Scholar
  40. 40.
    Adua E, Roberts P, Sakyi SA, Yeboah FA, Dompreh A, Frimpong K, et al (2017) Profiling of cardio-metabolic risk factors and medication utilisation among type II diabetes patients in Ghana: a prospective cohort study. Clin Trans Med 6(1):32CrossRefGoogle Scholar
  41. 41.
    Echouffo-Tcheugui JB, Kengne AP, Erqou S, Cooper RS (2015) High blood pressure in sub-Saharan Africa: the urgent imperative for prevention and control. J Clin Hypertens 17(10):751–755CrossRefGoogle Scholar
  42. 42.
    Cappuccio FP, Miller MA (2016) Cardiovascular disease and hypertension in sub-Saharan Africa: burden, risk and interventions. Intern Emerg Med 11(3):299–305CrossRefGoogle Scholar
  43. 43.
    Ofori-Asenso R, Garcia D (2016) Cardiovascular diseases in Ghana within the context of globalization. Cardiovasc Diagn Ther 6(1):67–77PubMedPubMedCentralGoogle Scholar
  44. 44.
    Mendis S, Puska P, Norrving B (2011) Global atlas on cardiovascular disease prevention and control. World Health Organization, Geneva, pp 1–55Google Scholar
  45. 45.
    Mensah G (2008) Ischaemic heart disease in Africa. Heart 94(7):836–843CrossRefGoogle Scholar
  46. 46.
    Khatibzadeh S, Farzadfar F, Oliver J, Ezzati M, Moran A (2013) Worldwide risk factors for heart failure: a systematic review and pooled analysis. Int J Cardiol 168(2):1186–1194CrossRefGoogle Scholar
  47. 47.
    Yu X, Wang Y, Kristic J, Dong J, Chu X, Ge S, et al (2016) Profiling IgG N-glycans as potential biomarker of chronological and biological ages: a community-based study in a Han Chinese population. Medicine (Baltimore) 95(28):e4112CrossRefGoogle Scholar
  48. 48.
    Franco OH, Karnik K, Osborne G, Ordovas JM, Catt M, van der Ouderaa F (2009) Changing course in ageing research: the healthy ageing phenotype. Maturitas 63(1):13–19CrossRefGoogle Scholar
  49. 49.
    Bonora E, Tuomilehto J (2011) The pros and cons of diagnosing diabetes with A1C. Diabetes Care 34(Suppl 2):S184–SS90CrossRefGoogle Scholar
  50. 50.
    Danquah I, Bedu-Addo G, Terpe KJ, Micah F, AmoakoYA AYA, et al (2012) Diabetes mellitus type 2 in urban Ghana: characteristics and associated factors. BMC Public Health 12(210):1–8Google Scholar
  51. 51.
    Kahn HS, Cheng YJ, Thompson TJ, Imperatore G, Gregg EW (2009) Two risk-scoring systems for predicting incident diabetes mellitus in US adults age 45 to 64 years. Ann Intern Med 150:741–751CrossRefGoogle Scholar
  52. 52.
    Kolberg JA, Jorgensen T, Gerwien RW, Hamren S, McKenna MP, Moler E, et al (2009) Development of a type 2 diabetes risk model from a panel of serum biomarkers from the Inter99 cohort. Diabetes Care 32:1207–1212CrossRefGoogle Scholar
  53. 53.
    Liu M, Pan C, Jin M (2011) A Chinese diabetes risk score for screening of undiagnosed diabetes and abnormal glucose tolerance. Diabetes Technol Ther 13:501–507CrossRefGoogle Scholar
  54. 54.
    Mehrabi Y, Sarbakhsh P, Hadaegh F, Khadem-Maboudi A (2010) Prediction of diabetes using logic regression. Iran J Endocrinol Metab 12:16–24Google Scholar
  55. 55.
    Rathmann W, Kowall B, Heier M, Herder C, Holle R, Thorand B, et al (2010) Prediction models for incident type 2 diabetes mellitus in the older population: KORA S4/F4 cohort study. Diabet Med 27:1116–1123CrossRefGoogle Scholar
  56. 56.
    Adua E, Russell A, Roberts P, Wang Y, Song M, Wang W (2017) Innovation analysis on Postgenomic biomarkers: glycomics for chronic diseases. OMICS 21(4):183–196CrossRefGoogle Scholar
  57. 57.
    Wang YX, Adua E, Russell A, Roberts P, Ge S, Zeng Q, Wang W (2016) Glycomics and its application potential in precision medicine. Science 354(6319):36–39Google Scholar
  58. 58.
    Wang Y, Klarić L, Yu X, Thaqi K, Dong J, Novokmet M, et al (2016) The association between glycosylationof immunoglobulin G and hypertension: a multiple ethnic cross-sectional study. Medicine 95(17):e3379CrossRefGoogle Scholar
  59. 59.
    Lu JP, Knezevic A, Wang YX, Rudan I, Campbell H, Zou ZK, et al (2011) Screening novel biomarkers for metabolic syndrome by profiling human plasma N-glycans in ChineseHan and Croatian populations. J Proteome Res 10(11):4959–4969CrossRefGoogle Scholar
  60. 60.
    Adua  E, Memarian E, Russell A, Irbojević-Akmačić I,  Gudelj  I, Jurić J et al (2019) High throughput profiling of whole plasma N-glycans in type II diabetes mellitus patients and healthy individuals: a perspective from a Ghanaian population. Arch Biochem Biophys 661: 10–21CrossRefGoogle Scholar
  61. 61.
    Golubnitschaja O, Costigliola V (2012) EPMA. General report & recommendations in predictive, preventive and personalised medicine 2012: white paper of the European Association for Predictive, Preventive and Personalised Medicine. EPMA J 3(1):14CrossRefGoogle Scholar
  62. 62.
    Golubnitschaja O, Watson ID, Topic E, Sandberg S, Ferrari M, Costigliola V (2013) Position paper of the EPMA and EFLM: a global vision of the consolidated promotion of an integrative medical approach to advance health care. EPMA J 4(1):12Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wei Wang
    • 1
  • Xuerui Tan
    • 2
  1. 1.Edith Cowan UniversityPerthAustralia
  2. 2.The First Affiliated Hospital of Shantou University Medical CollegeShantouChina

Personalised recommendations