Advertisement

Using Moment Constraints in GME Estimation

  • Richard E. HowittEmail author
  • Siwa Msangi
Chapter
Part of the Natural Resource Management and Policy book series (NRMP, volume 50)

Abstract

In this contribution, we explore the sensitivity of parameter estimates derived through the generalized maximum entropy (GME) approach under alternative specifications of the width of the error term supports. Although many recommend a “three-sigma” rule for setting the width of this term, there can be noticeable differences in the results if it is expanded beyond that, as others in the literature have suggested. We use a Monte Carlo analysis to see how imposing a moment-based condition into the GME problem, as an additional constraint, affects the results. We find that it removes the sensitivity of the parameter estimates to the width of the supports for the error term and that this remains robust even when the data is ill-conditioned. Based on this, we recommend that researchers impose this condition when doing GME-based estimation, to improve the performance of the estimator.

References

  1. Brooke, A., Kendrick, D., & Meeraus, A. (1988). GAMS: A users’s guide. The Scientific Press.Google Scholar
  2. Fernandez, L. (1997). Estimation of wastewater treatment objectives through maximum entropy. Journal of Environmental Economics and Management, 32, 293–308.CrossRefGoogle Scholar
  3. Ferreira, P. (2013). An application of general maximum entropy to utility. International Journal of Applied Decision Sciences, 6(3), 228–244.CrossRefGoogle Scholar
  4. Fragaso, R. M., & Carvalho, M. L. (2012). Estimation of joint costs allocation coefficients using the maximum entropy: A case of mediterranean farms. Journal of Quantitative Economics, 10(2), 91–111.Google Scholar
  5. Fraser, I. (2000). An application of maximum entropy estimation: The demand for meat in the United Kingdom. Applied Economics, 32(1), 45–59.CrossRefGoogle Scholar
  6. Gohin, A. (2000). Positive mathematical programming and maximum entropy: Economic tools for applied production analysis. In INRA-ESR-Rennes Economics, Paris.Google Scholar
  7. Golan, A., Judge, G., & Miller, D. (1996b). Maximum entropy econometrics: Robust estimation with limited data. New York: Wiley.Google Scholar
  8. Golan, A., Judge, G. & Karp, L. (1996b). A maximum entropy approach to estimation and inference in dynamic models or counting fish in the sea using maximum entropy. Journal of Economic Dynamics and Control 20(4): 559–582.Google Scholar
  9. Howitt, R. E., & Msangi, S. (2014). Entropy estimation of disaggregate production functions: An application to Northern Mexico. Entropy, 16, 1349–1364.  https://doi.org/10.3390/e16031349.CrossRefGoogle Scholar
  10. Kaplan, J. D., Howitt, R. E., & Farzin, Y. H. (2003). An information theoretic analysis of budget-constrained nonpoint source pollution. Journal of Environmental Economics and Management, 46(1), 106–130.CrossRefGoogle Scholar
  11. Lansink, A. O., Silva, E., & Stefanou, S. (2001). Inter-firm and intra-firm efficiency measures. Journal of Productivity Analysis, 15, 185–199.CrossRefGoogle Scholar
  12. Lence, S. H., & Miller, D. J. (1998). Estimation of multi-output production functions with incomplete data: A generalized maximum entropy approach. European Review of Agricultural Economics, 25, 188–209.CrossRefGoogle Scholar
  13. Leon, Y., Peeters, L., Quinqu, M., & Surry, Y. (1999). The use of maximum entropy to estimate input-output coefficients from regional farm accounting data. Journal of Agricultural Economics, 50(3), 425–439.CrossRefGoogle Scholar
  14. Marsh, T. L., Mittlehammer, R., & Cardell, N. S. (2001). Generalized maximum entropy analysis of the linear simultaneous equations model. Entropy, 16(2), 825–853.CrossRefGoogle Scholar
  15. Mittelhammer, R. C., Judge, G. G., & Miller, D. J. (2000). Econometric foundations. New York: Cambridge University Press.Google Scholar
  16. Owen, A. (1988). Empirical likelihood confidence ratio confidence intervals for a single functional. Biometrika, 75(2), 237–249.CrossRefGoogle Scholar
  17. Owen, A. (1991). Empirical likelihood for linear models. The Annals of Statistics, 19, 1725–1747.CrossRefGoogle Scholar
  18. Paris, Q. (2001, April). MELE: Maximum entropy leuven estimators. Working Paper 01-003. UC Davis: Department of Agricultural and Resource Economics, UCD. Retrieved from https://escholarship.org/uc/item/66q143ht.
  19. Paris, Q., & Caputo, M. R. (2001, August). Sensitivity of the GME estimates to support bounds. Working Paper 01–008. Davis: Dept of Agricultural & Resource Economics, University of California.Google Scholar
  20. Preckel, P. V. (2001). Least squares and entropy: A penalty function perspective. American Journal of Agricultural Economics, 83(2), 366–377.CrossRefGoogle Scholar
  21. Pukelsheim, F. (1994). The 3-sigma rule. American statistician, 48(2), 88–91.Google Scholar
  22. Qin, J., & Lawless, J. (1994). Empirical likelihood and general estimating equations. Annals of Statistics, 22(1), 300–325.CrossRefGoogle Scholar
  23. Van Akkeren, Judge, M. G., & Mittelhammer, R. (2002). Generalized moment based estimation and inference. Journal of Econometrics 107 (1–2): 127–148.Google Scholar
  24. Wu, X. (2009). A weighted generalized maximum entropy estimator with a data-driven weight. Entropy, 11.  https://doi.org/10.3390/e11040917.
  25. Zhang, X., & Fan, S. (2001). Estimating crop-specific production technologies in chinese agriculture: A generalized maximum entropy approach. American Journal of Agricultural Economics, 83(2), 378–388.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Agricultural and Resource Economics DepartmentUniversity of CaliforniaDavisUSA
  2. 2.International Food Policy Research InstituteWashingtonUSA

Personalised recommendations