Advertisement

Towards Econometric Mathematical Programming for Policy Analysis

  • Bruno Henry de FrahanEmail author
Chapter
Part of the Natural Resource Management and Policy book series (NRMP, volume 50)

Abstract

This contribution focuses in reviewing the development of positive mathematical programming towards econometric mathematical programming. Starting with the entropy approach it reviews alternative approaches and model specifications that appeared in the recent PMP-related literature for estimating those nonlinear terms that achieve the accurate calibration of optimisation programmes and guide the simulation response to policy scenarios. Combining recent contributions from this literature, it then proposes a possible framework to estimate and calibrate simultaneously model parameters ready to use for performing policy simulations.

References

  1. Arata, L., Donati, M., Sckokai, P., & Arfini, F. (2017). Incorporating risk in a positive mathematical programming framework: A dual approach. Australian Journal of Agricultural and Resource Economics, 61(2), 265–284.CrossRefGoogle Scholar
  2. Arfini, F., & Donati, M. (2011). The impact of the Health Check on structural change and farm efficiency: A comparative assessment of three European agricultural regions. In C. Moreddu (Ed.), Disaggregated impacts of CAP reforms: Proceedings of an OECD Workshop. Paris, France: OECD Publishing.Google Scholar
  3. Arfini, F., Donati, M., Grossi L., & Paris, Q. (2008). Revenue and cost functions in PMP: A methodological integration for a territorial analysis of CAP. Paper presented at the 107th EAAE Seminar ‘Modelling of Agricultural and Rural Development Policies’. Sevilla, Spain, January 29–February 1st 2008.Google Scholar
  4. Arndt, C., Robinson, S., & Tarp, F. (2002). Parameter estimation for a computable general equilibrium model: A maximum entropy approach. Economic Modelling, 19, 375–398.CrossRefGoogle Scholar
  5. Britz, W., & Arata, L. (2019). Econometric mathematical programming: an application to the estimation of costs and risk preferences at farm level. Agricultural Economics, 50.Google Scholar
  6. Britz, W., Heckelei, T., & Wolff, H. (2003). Symmetric positive equilibrium problem: A framework for rationalizing economic behaviour with limited information: Comment. American Journal of Agricultural Economics, 85(4), 1078–1081.CrossRefGoogle Scholar
  7. Buysse, J., Fernagut, B., Harmignie, O., Henry de Frahan, B., Lauwers, L., Polomé, P., et al. (2007a). Farm-based modelling of the EU sugar reform: Impact on Belgian sugar beet suppliers. European Review of Agricultural Economics, 34(1), 21–52.CrossRefGoogle Scholar
  8. Buysse, J., Van Huylenbroeck, G., & Lauwers, L. (2007b). Normative, positive and econometric mathematical programming as tools for incorporation of multifunctionality in agricultural policy modelling. Agriculture, Ecosystems & Environment, 120(1), 70–81.CrossRefGoogle Scholar
  9. Chambers, R. G., & Just, R. E. (1989). Estimating multioutput technologies. American Journal of Agricultural Economics, 71(4), 980–995.CrossRefGoogle Scholar
  10. Cortignani, R., & Severini, S. (2009). Modelling farm-level adoption of deficit irrigation using positive mathematical programming. Agricultural Water Management, 96(12), 1785–1791.CrossRefGoogle Scholar
  11. Cortignani, R., & Severini, S. (2012). Modelling farmer participation to a revenue insurance scheme by means of the positive mathematical programming. Agricultural Economics—Czech, 58(7), 324–331.CrossRefGoogle Scholar
  12. Ferris, M. C., Dirkse, S. P., Jagla, J.-H., & Meeraus, A. (2009). An extended mathematical programming framework. Computers & Chemical Engineering, 33(12), 1973–1982.CrossRefGoogle Scholar
  13. Ferris, M. C., Dirkse, S. P., & Meeraus, A. (2002). Mathematical programs with equilibrium constraints: Automatic reformulation and solution via constrained optimization (Computing Laboratory Report No. 02/11). Oxford: England: Oxford University.Google Scholar
  14. Frisvold, G. B., & Konyar, K. (2012). Less water: How will agriculture in Southern Mountain states adapt? Water Resources Research, 48, W05534.  https://doi.org/10.1029/2011WR011057.CrossRefGoogle Scholar
  15. Garnache, C., & Mérel, P. (2015). What can acreage allocations say about supply elasticities? A convex programming approach to supply response disaggregation. Journal of Agricultural Economics, 66(1), 236–256.CrossRefGoogle Scholar
  16. Garnache, C., Mérel, P. R., Howitt, R. E., Howitt, R. E., & Lee, J. (2017). Calibration of shadow values in constrained optimization models of agricultural supply. European Review of Agricultural Economics, 44(3), 363–397.CrossRefGoogle Scholar
  17. Gocht, A. (2005). Assessment of simulation behaviour of different mathematical programming approaches. In F. Arfini (Ed.), Modelling agricultural policies: State of the art and new challenges. Proceedings of the 89th European Seminar of the European Association of Agricultural Economists (pp. 48–73). Italy: University of Parma.Google Scholar
  18. Gocht, A., & Britz, W. (2011). EU-wide farm type supply models in CAPRI-How to consistently disaggregate sector models into farm type models. Journal of Policy Modeling, 33(1), 146–167.CrossRefGoogle Scholar
  19. Golan, A., Judge, G., & Miller, D. (1996). Maximum entropy econometrics. Chichester: Wiley.Google Scholar
  20. Gorddard, R. (2013). Profit-maximizing land-use revisited: The testable implications of non-joint crop production under land constraint. American Journal of Agricultural Economics, 95(5), 1109–1121.CrossRefGoogle Scholar
  21. Graindorge, C., Henry de Frahan, B., & Howitt, R. E. (2001). Analysing the effects of Agenda 2000 using a CES calibrated model of Belgian agriculture. In T. Heckelei, H. P. Witzke, & W. Henrichsmeyer (Eds.), Agricultural sector modelling and policy information systems (pp. 177–186). Kiel: Vauk Verlag.Google Scholar
  22. Graveline, N., & Mérel, P. (2014). Intensive and extensive margin adjustments to water scarcity in France’s cereal belt. European Review of Agricultural Economics, 41(5), 707–743.CrossRefGoogle Scholar
  23. Guyomard, H., Baudry, M., & Carpentier, A. (1996). Estimating crop supply response in the presence of farm programmes: Application to the CAP. European Review of Agricultural Economics, 23, 401–420.CrossRefGoogle Scholar
  24. Heckelei, T., & Britz, W. (2000). Positive mathematical programming with multiple data points: A cross-sectional estimation procedure. Cahiers d’Economie et Sociologie Rurales, 57(4), 28–50.Google Scholar
  25. Heckelei, T., & Britz, W. (2005). Models based on positive mathematical programming: State of the art and further extensions. In F. Arfini (Ed.), Modelling agricultural policies: state of the art and new challenges. Proceedings of the 89th European Seminar of the European Association of Agricultural Economists (pp. 48–73). Italy: University of Parma.Google Scholar
  26. Heckelei, T., & Wolff, H. (2003). Estimation of constrained optimisation models for agricultural supply analysis based on generalised maximum entropy. European Review of Agricultural Economics, 30(1), 27–50.CrossRefGoogle Scholar
  27. Heckelei, T., Britz, W., & Zhang, Y. (2012). Positive mathematical programming approaches—recent developments in literature and applied modelling. Bio-based and Applied Economics, 1(1), 109–124.Google Scholar
  28. Heckelei, T., Mittelhammer, R., & Jansson T. (2008). A Bayesian alternative to generalized cross entropy solutions for underdetermined econometric models. In Food and Resource Economics Discussion Paper 2008:2, Institute for Food and Resource Economics, University of Bonn.Google Scholar
  29. Helming, J. F. M., Peeters, L., & Veendendaal, P. J. J. (2001). Assessing the consequences of environmental policy scenarios in Flemish agriculture. In T. Heckelei, H. P. Witzke, & W. Henrichsmeyer (Eds.), Agricultural sector modelling and policy information systems. Proceedings of the 65th EAAE Seminar, March 29–31, 2000 at Bonn University (pp. 237–245). Kiel: Vauk Verlag.Google Scholar
  30. Henry de Frahan, B., Buysse, J., Polomé, P., Fernagut, B., Harmignie, O., Lauwers, L., et al. (2007). Positive mathematical programming for agricultural and environmental policy analysis: Review and practice. In A. Weintraub, C. Romero, T. Bjørndal, R. Epstein, & J. Miranda (Eds.), Handbook of operations research in natural resources, international series in operations research and management science (pp. 129–154). New York: Springer.Google Scholar
  31. Henry de Frahan, B., Baudry, A., De Blander, R., Polomé, P., & Howitt, R. (2011). Dairy farms without quotas in Belgium: Estimations and simulations with a flexible cost function. European review of agricultural economics, 38(4), 1–27.CrossRefGoogle Scholar
  32. Howitt, R. E. (1995a). Positive mathematical programming. American Journal of Agricultural Economics, 77(2), 329–342.CrossRefGoogle Scholar
  33. Howitt, R. E. (1995b). A calibration method for agricultural economic production models. Journal of Agricultural Economics, 46(2), 147–159.CrossRefGoogle Scholar
  34. Jansson, T., & Heckelei, T. (2011). Estimating a primal model of regional crop supply in the European Union. Journal of Agricultural Economics, 62(1), 137–152.CrossRefGoogle Scholar
  35. Jansson, T., & Heckelei, T. (2009). A new estimator for trade costs and its small sample properties. Economic Modelling, 26, 489–498.CrossRefGoogle Scholar
  36. Jansson, T., Heckelei, T., Gocht, A., Basnet, S. K., Zhang, Y., & Neuenfeldt, S. (2014). Analysing impacts of changing price variability with estimated farm risk-programming models. Paper presented at the EAAE 2014 Congress ‘Agri-Food and Rural Innovations for Healthier Societies’. Slovenia, Ljubljana, 26–29 Aug 2014.Google Scholar
  37. Júdez, L., Chaya, C., Martinez, S., & Gonsalez, A. A. (2001). Effects of the measures envisaged in “Agenda 2000” on Arable Crop Producers and Beef and Veal Producers: An application of positive mathematical programming to representative farms of a Spanish region. Agricultural Systems, 67, 121–138.CrossRefGoogle Scholar
  38. Kanellopoulos, A., Berentsen, P., Heckelei, T., van Ittersum, M., & Oude Lansink, A. (2010). Assessing the forecasting performance of a generic bio-economic farm model calibrated with two different PMP variants. Journal of Agricultural Economics, 61(2), 137–152.CrossRefGoogle Scholar
  39. Lence, H. L., & Miller, D. (1998). Recovering output specific inputs from aggregate input data: A generalized cross-entropy approach. American Journal of Agricultural Economics, 80(4), 852–867.CrossRefGoogle Scholar
  40. Léon, Y., Peeters, L., Quinqu, M., & Surry, Y. (1999). The use of maximum entropy to estimate input-output coefficients from regional farm accounting data. Journal of Agricultural Economics, 50, 425–439.CrossRefGoogle Scholar
  41. Louhichi, K., Ciaian, P., Espinosa, M., Perni, A., Vosough Ahmadi, B., Colen, L., & Gomez y Paloma, S. (2016). An EU-Wide Individual farm model for common agricultural policy analysis (IFM-CAP 1.0) (technical documentation) (JRC Science and Policy Reports). Sevilla, Spain: European Commission, Joint Research Centre, Institute for Prospective Technological Studies.Google Scholar
  42. Louhichi, K., Kanellopoulos, A., Janssen, S., Flichman, G., Blanco, M., Hengsdijk, H., et al. (2010). FSSIM, a bio-economic farm model for simulating the response of EU farming systems to agricultural and environmental policies. Agricultural Systems, 103(8), 585–597.CrossRefGoogle Scholar
  43. Marsh, T. L., Mittelhammer, R., & Cardell, N. S. (2014). Generalized maximum entropy analysis of the linear simultaneous equations model. Entropy, 16, 825–853.CrossRefGoogle Scholar
  44. Medellin-Azuara, J., Howitt, R., & Harou, J. (2012). Predicting farmer responses to water pricing, rationing and subsidies assuming profit maximizing investment in irrigation technology. Agricultural Water Management, 108, 73–82.CrossRefGoogle Scholar
  45. Mérel, P., & Bucaram, S. (2010). Exact calibration of programming models of agricultural supply against exogenous supply elasticities. European Review of Agricultural Economics, 37(3), 395–418.CrossRefGoogle Scholar
  46. Mérel, P., & Howitt, R. E. (2014). Theory and application of positive mathematical programming in agriculture and the environment. Annual Review of Resource Economics, 6, 451–470.CrossRefGoogle Scholar
  47. Mérel, P., Simon, L. K., & Yi, F. (2011). A fully calibrated generalized constant-elasticity-of-substitution programming model of agricultural supply. American Journal of Agricultural Economics, 93(4), 936–948.CrossRefGoogle Scholar
  48. Mérel, P., Yi, F., Lee, J., & Six, J. (2014). A regional bio-economic model of nitrogen use in cropping. American Journal of Agricultural Economics, 96(1), 67–91.CrossRefGoogle Scholar
  49. Mittelhammer, R. C., Cardell, N. S., & Marsh, T. L. (2013). The data-constrained generalized maximum entropy estimator of the GLM: Asymptotic theory and inference. Entropy, 15, 1756–1775.CrossRefGoogle Scholar
  50. Moro, D., & Sckokai, P. (1999). Modelling the CAP arable crop regime in Italy: Degree of decoupling and impact of Agenda 2000. Cahiers d’Economie et Sociologie Rurales, 53, 50–73.Google Scholar
  51. Oude Lansink, A. (1999). Generalised maximum entropy and heterogeneous technologies. European Review of Agricultural Economics, 26, 101–115.CrossRefGoogle Scholar
  52. Paris, Q. (2001a). Symmetric positive equilibrium problem: A framework for rationalizing economic behavior with limited information. American Journal of Agricultural Economics, 83(4), 1049–1061.CrossRefGoogle Scholar
  53. Paris, Q. (2001b). Dynamic positive equilibrium problem. Working Paper. Davis: Department of Agricultural and Resource Economics. University of California.Google Scholar
  54. Paris, Q. (2011). Economic foundations of symmetric programming. Cambridge: Cambridge University Press.Google Scholar
  55. Paris, Q. (2015). Positive mathematical programming with generalized risk: A revision. Working Paper. Davis: Department of Agricultural and Resource Economics. University of California, April 2015.Google Scholar
  56. Paris, Q. (2017). Cost function and positive mathematical programming. Bio-based and Applied Economics, 6(1), 19–35.Google Scholar
  57. Paris, Q., & Howitt, R. E. (1998). An analysis of ill-posed production problems using maximum entropy. American Journal of Agricultural Economics, 80(1), 124–138.CrossRefGoogle Scholar
  58. Petsakos, A., & Rozakis, S. (2015). Calibration of agricultural risk programming models. European Journal of Operational Research, 24, 536–545.CrossRefGoogle Scholar
  59. Preckel, P. V. (2001). Least squares and entropy: A penalty function perspective. American Journal of Agricultural Economics, 83(2), 366–377.CrossRefGoogle Scholar
  60. Röhm, O., & Dabbert, S. (2003). Integrating agri-Environmental programs into regional production models: An extension of positive mathematical programming. American Journal of Agricultural Economics, 85(1), 254–265.CrossRefGoogle Scholar
  61. Sinha, A., Malo, P., & Deb, K. (2017). A review on bilevel optimization: From classical to evolutionary approaches and applications. arXiv:1705.06270v1 [math.OC]. 17 May 2017.
  62. Vicente, L. N., & Calamai, P. H. (1994). Bilevel and multilevel programming: A bibliography review. Journal of Global Optimization, 5(3), 291–306.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Earth and Life Institute, Université catholique de LouvainLouvain-La-NeuveBelgium

Personalised recommendations