Advertisement

Decidability of Sensitivity and Equicontinuity for Linear Higher-Order Cellular Automata

  • Alberto Dennunzio
  • Enrico Formenti
  • Luca ManzoniEmail author
  • Luciano Margara
  • Antonio E. Porreca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11417)

Abstract

We study the dynamical behavior of linear higher-order cellular automata (HOCA) over \(\mathbb {Z}_m\). In standard cellular automata the global state of the system at time t only depends on the state at time \(t-1\), while in HOCA it is a function of the states at time \(t-1\), ..., \(t-n\), where \(n\ge 1\) is the memory size. In particular, we provide easy-to-check necessary and sufficient conditions for a linear HOCA over \(\mathbb {Z}_m\) of memory size n to be sensitive to the initial conditions or equicontinuous. Our characterizations of sensitivity and equicontinuity extend the ones shown in [23] for linear cellular automata (LCA) over \(\mathbb {Z}_m^n\) in the case \(n=1\). We also prove that linear HOCA over \(\mathbb {Z}_m\) of memory size n are indistinguishable from a subclass of LCA over \(\mathbb {Z}_m^n\). This enables to decide injectivity and surjectivity for linear HOCA over \(\mathbb {Z}_m\) of memory size n by means of the decidable characterizations of injectivity and surjectivity provided in [2] and [20] for LCA over \(\mathbb {Z}^n_m\).

References

  1. 1.
    Acerbi, L., Dennunzio, A., Formenti, E.: Shifting and lifting of cellular automata. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 1–10. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73001-9_1CrossRefzbMATHGoogle Scholar
  2. 2.
    Bruyn, L.L., den Bergh, M.V.: Algebraic properties of linear cellular automata. Linear Algebra Appl. 157, 217–234 (1991)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cattaneo, G., Dennunzio, A., Margara, L.: Solution of some conjectures about topological properties of linear cellular automata. Theor. Comput. Sci. 325(2), 249–271 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cervelle, J., Lafitte, G.: On shift-invariant maximal filters and hormonal cellular automata. In: LICS: Logic in Computer Science, Reykjavik, Iceland, pp. 1–10, June 2017Google Scholar
  5. 5.
    d’Amico, M., Manzini, G., Margara, L.: On computing the entropy of cellular automata. Theor. Comput. Sci. 290(3), 1629–1646 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dennunzio, A.: From one-dimensional to two-dimensional cellular automata. Fundam. Informaticae 115(1), 87–105 (2012)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dennunzio, A., Di Lena, P., Formenti, E., Margara, L.: Periodic orbits and dynamical complexity in cellular automata. Fundam. Informaticae 126(2–3), 183–199 (2013)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dennunzio, A., Formenti, E., Manzoni, L.: Computing issues of asynchronous CA. Fundam. Informaticae 120(2), 165–180 (2012)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dennunzio, A., Formenti, E., Manzoni, L.: Reaction systems and extremal combinatorics properties. Theor. Comput. Sci. 598, 138–149 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dennunzio, A., Formenti, E., Manzoni, L., Mauri, G.: m-asynchronous cellular automata: from fairness to quasi-fairness. Nat. Comput. 12(4), 561–572 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dennunzio, A., Formenti, E., Manzoni, L., Mauri, G., Porreca, A.E.: Computational complexity of finite asynchronous cellular automata. Theor. Comput. Sci. 664, 131–143 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E.: Ancestors, descendants, and gardens of Eden in reaction systems. Theor. Comput. Sci. 608, 16–26 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dennunzio, A., Formenti, E., Provillard, J.: Non-uniform cellular automata: classes, dynamics, and decidability. Inf. Comput. 215, 32–46 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dennunzio, A., Formenti, E., Provillard, J.: Local rule distributions, language complexity and non-uniform cellular automata. Theor. Comput. Sci. 504, 38–51 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dennunzio, A., Formenti, E., Provillard, J.: Three research directions in non-uniform cellular automata. Theor. Comput. Sci. 559, 73–90 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dennunzio, A., Formenti, E., Weiss, M.: Multidimensional cellular automata: closing property, quasi-expansivity, and (un)decidability issues. Theor. Comput. Sci. 516, 40–59 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dennunzio, A., Guillon, P., Masson, B.: Stable dynamics of sand automata. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) TCS 2008. IIFIP, vol. 273, pp. 157–169. Springer, Boston, MA (2008).  https://doi.org/10.1007/978-0-387-09680-3_11CrossRefGoogle Scholar
  18. 18.
    Ingerson, T., Buvel, R.: Structure in asynchronous cellular automata. Phys. D Nonlinear Phenomena 10(1), 59–68 (1984)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ito, M., Osato, N., Nasu, M.: Linear cellular automata over \(\mathbb{Z}_m\). J. Comput. Syst. Sci. 27, 125–140 (1983)CrossRefGoogle Scholar
  20. 20.
    Kari, J.: Linear cellular automata with multiple state variables. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 110–121. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-46541-3_9CrossRefGoogle Scholar
  21. 21.
    Knudsen, C.: Chaos without nonperiodicity. Am. Math. Monthly 101, 563–565 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic Theor. Dyn. Syst. 17, 417–433 (1997)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Manzini, G., Margara, L.: Attractors of linear cellular automata. J. Comput. Syst. Sci. 58(3), 597–610 (1999)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Manzini, G., Margara, L.: A complete and efficiently computable topological classification of D-dimensional linear cellular automata over Zm. Theor. Comput. Sci. 221(1–2), 157–177 (1999)CrossRefGoogle Scholar
  25. 25.
    Mariot, L., Leporati, A., Dennunzio, A., Formenti, E.: Computing the periods of preimages in surjective cellular automata. Nat. Comput. 16(3), 367–381 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular automata. Biosystems 51(3), 123–143 (1999)CrossRefGoogle Scholar
  27. 27.
    Toffoli, T.: Computation and construction universality. J. Comput. Syst. Sci. 15, 213–231 (1977)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alberto Dennunzio
    • 1
  • Enrico Formenti
    • 2
  • Luca Manzoni
    • 1
    Email author
  • Luciano Margara
    • 3
  • Antonio E. Porreca
    • 1
    • 4
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanItaly
  2. 2.Universite Côte d’Azur, CNRS, I3SNice CedexFrance
  3. 3.Department of Computer Science and EngineeringUniversity of BolognaCesenaItaly
  4. 4.Aix Marseille Université, Université de Toulon, CNRS, LISMarseilleFrance

Personalised recommendations