Advertisement

State Complexity of Pseudocatenation

  • Lila Kari
  • Timothy NgEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11417)

Abstract

The state complexity of a regular language \(L_m\) is the number m of states in a minimal deterministic finite automaton (DFA) accepting \(L_m\). The state complexity of a regularity-preserving binary operation on regular languages is defined as the maximal state complexity of the result of the operation, where the two operands range over all languages of state complexities \({\le }m\) and \({\le }n\), respectively. We consider the deterministic and nondeterministic state complexity of pseudocatenation. The pseudocatenation of two words x and y with respect to an antimorphic involution \(\theta \) is the set \(\{xy,x\theta (y)\}\). This operation was introduced in the context of DNA computing as the generator of pseudopowers of words (a pseudopower of a word u is a word in \(u \{u,\theta (u)\}^*\)). We prove that the state complexity of the pseudocatenation of languages \(L_m\) and \(L_n\), where \(m, n \ge 3\), is at most \((m-1)(2^{2n} - 2^{n+1} + 2) + 2^{2n-2} - 2^{n-1} + 1\). Moreover, for \(m, n \ge 3\) there exist languages \(L_m\) and \(L_n\) over an alphabet of size 4, whose pseudocatenation meets the upper bound. We also prove that the state complexity of the positive pseudocatenation closure of a regular language \(L_n\) has an upper bound of \(2^{2n-1} - 2^n +1\), and that this bound can be reached, with the witness being a language over an alphabet of size 4.

References

  1. 1.
    Brzozowski, J., Liu, D.: Universal witnesses for state complexity of basic operations combined with reversal. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 72–83. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39274-0_8CrossRefzbMATHGoogle Scholar
  2. 2.
    Brzozowski, J., Liu, D.: Universal witnesses for state complexity of boolean operations and concatenation combined with star. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 30–41. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39310-5_5CrossRefzbMATHGoogle Scholar
  3. 3.
    Brzozowski, J.A., Kari, L., Li, B., Szykuła, M.: State complexity of overlap assembly. In: Câmpeanu, C. (ed.) CIAA 2018. LNCS, vol. 10977, pp. 109–120. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94812-6_10CrossRefzbMATHGoogle Scholar
  4. 4.
    Caron, P., Luque, J.G., Patrou, B.: State complexity of multiple catenation. arXiv:1607.04031 (2016)
  5. 5.
    Cho, D.J., Han, Y.S., Kim, H., Palioudakis, A., Salomaa, K.: Duplications and pseudo-duplications. Int. J. Unconv. Comput. 12(2–3), 157–168 (2016)zbMATHGoogle Scholar
  6. 6.
    Cho, D.J., Han, Y.S., Ko, S.K., Salomaa, K.: State complexity of inversion operations. Theoret. Comput. Sci. 610, 2–12 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of two combined operations: catenation-union and catenation-intersection. Int. J. Found. Comput. Sci. 22(08), 1797–1812 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of combined operations with two basic operations. Theoret. Comput. Sci. 437, 82–102 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of two combined operations: catenation-star and catenation-reversal. Int. J. Found. Comput. Sci. 23(01), 51–66 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Czeizler, E., Kari, L., Seki, S.: On a special class of primitive words. Theoret. Comput. Sci. 411(3), 617–630 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Domaratzki, M., Okhotin, A.: State complexity of power. Theoret. Comput. Sci. 410(24–25), 2377–2392 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity. J. Automata Lang. Comb. 21(4), 251–310 (2016)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Gao, Y., Yu, S.: State complexity of four combined operations composed of union, intersection, star and reversal. In: Holzer, M., Kutrib, M., Pighizzini, G. (eds.) DCFS 2011. LNCS, vol. 6808, pp. 158–171. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22600-7_13CrossRefGoogle Scholar
  14. 14.
    Gao, Y., Yu, S.: State complexity of combined operations with union, intersection, star and reversal. Fundamenta Informaticae 116, 79–92 (2012)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic finite automata. Inf. Process. Lett. 59(2), 75–77 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kari, L., Konstantinidis, S., Losseva, E., Sosik, P., Thierrin, G.: A formal language analysis of DNA hairpin structures. Fundamenta Informaticae 71, 453–475 (2006)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kari, L., Kulkarni, M.: Generating the pseudo-powers of a word. J. Automata Lang. Comb. 19(1–4), 157–171 (2014)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kari, L., Mahalingam, K.: Watson-Crick conjugate and commutative words. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 273–283. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-77962-9_29CrossRefzbMATHGoogle Scholar
  19. 19.
    Kari, L., Seki, S.: On pseudoknot-bordered words and their properties. J. Comput. Syst. Sci. 75, 113–121 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Liu, G., Martin-Vide, C., Salomaa, A., Yu, S.: State complexity of basic language operations combined with reversal. Inf. Comput. 206(9–10), 1178–1186 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    de Luca, A., Luca, A.D.: Pseudopalindrome closure operators in free monoids. Theoret. Comput. Sci. 362(1–3), 282–300 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Rampersad, N.: The state complexity of \(L^2\) and \(L^k\). Inf. Process. Lett. 98(6), 231–234 (2006)CrossRefGoogle Scholar
  23. 23.
    Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. Theoret. Comput. Sci. 383(2–3), 140–152 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Salomaa, A., Salomaa, K., Yu, S.: Undecidability of state complexity. Int. J. Comput. Math. 90(6), 1310–1320 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 41–110. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-3-642-59136-5_2CrossRefGoogle Scholar
  26. 26.
    Yu, S., Salomaa, K., Zhuang, Q.: The state complexities of some basic operations on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations