Advertisement

Interactions Between Blood Proteins and Nanoparticles Investigated Using Molecular Dynamics Simulations

  • Timo Schafer
  • Christian Muhl
  • Matthias Barz
  • Friederike Schmid
  • Giovanni SettanniEmail author
Conference paper

Abstract

In the development of new therapeutic agents based on nanoparticles it is of fundamental importance understanding how these substances interact with the underlying biological milieu. Our research is focussed on simulating in silico these interactions using accurate atomistic models, and gather from these information general pictures and simplified models of the underlying phenomena. Here we report results about the interactions of blood proteins with promising hydrophilic polymers used for the coating of therapeutic nanoparticles, about the salt dependent behavior of one of these polymers (poly-(ethylene glycol)) and about the interactions of blood proteins with silica, one of the most used materials for the production of nanoparticles.

Notes

Acknowledgements

TS gratefully acknowledges financial support from the Graduate School Materials Science in Mainz. GS gratefully acknowledges financial support from the Max-Planck Graduate Center with the University of Mainz. We gratefully acknowledge support with computing time from the HPC facility Hazelhen at the High performance computing center Stuttgart and the HPC facility Mogon at the university of Mainz. This work was supported by the German Science Foundation within SFB 1066 project Q1.

References

  1. 1.
    K. Cho, X. Wang, S. Nie, Z.G. Chen, D.M. Shin, Clin. Cancer Res. 14(5), 1310 (2008).  https://doi.org/10.1158/1078-0432.CCR-07-1441. http://clincancerres.aacrjournals.org/content/14/5/1310.abstractCrossRefGoogle Scholar
  2. 2.
    M.P. Monopoli, C. Aberg, A. Salvati, K.A. Dawson, Nat. Nanotechnol. 7(12), 779 (2012).  https://doi.org/10.1038/nnano.2012.207. URL http://dx.doi.org/10.1038/nnano.2012.207CrossRefGoogle Scholar
  3. 3.
    A. Lesniak, F. Fenaroli, M.P. Monopoli, C. Aberg, K.A. Dawson, A. Salvati, ACS Nano 6(7), 5845 (2012).  https://doi.org/10.1021/nn300223w. URL http://dx.doi.org/10.1021/nn300223wCrossRefGoogle Scholar
  4. 4.
    D. Frenkel, B. Smit, Understanding Molecular Simulations, Computational Science, vol. 1, 2nd edn. (Academic Press, 2002)Google Scholar
  5. 5.
    A.D. MacKerell, D. Bashford, Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, M. Karplus, J. Phys. Chem. B 102(18), 3586 (1998).  https://doi.org/10.1021/jp973084f. URL http://pubs.acs.org/doi/abs/10.1021/jp973084fCrossRefGoogle Scholar
  6. 6.
    K. Lindorff-Larsen, S. Piana, R.O. Dror, D.E. Shaw, Science 334(6055), 517 (2011).  https://doi.org/10.1126/science.1208351. http://www.sciencemag.org/cgi/content/abstract/sci;334/6055/517CrossRefGoogle Scholar
  7. 7.
    H. Heinz, T.J. Lin, R.K. Mishra, F.S. Emami, Langmuir 29(6), 1754 (2013).  https://doi.org/10.1021/la3038846. URL http://dx.doi.org/10.1021/la3038846. PMID: 23276161CrossRefGoogle Scholar
  8. 8.
    H. Lee, R.M. Venable, A.D. Mackerell, R.W. Pastor, Biophys. J. 95(4), 1590 (2008).  https://doi.org/10.1529/biophysj.108.133025CrossRefGoogle Scholar
  9. 9.
    D.T. Mirijanian, R.V. Mannige, R.N. Zuckermann, S. Whitelam, J. Comput. Chem. 35(5), 360 (2014).  https://doi.org/10.1002/jcc.23478CrossRefGoogle Scholar
  10. 10.
    K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A.D. Mackerell, J. Comput. Chem. 31(4), 671 (2010).  https://doi.org/10.1002/jcc.21367. URL http://dx.doi.org/10.1002/jcc.21367
  11. 11.
    J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 26, 1781 (2005)CrossRefGoogle Scholar
  12. 12.
    A.D. Mackerell, M. Feig, C.L. Brooks, J. Comput. Chem. 25(11), 1400 (2004).  https://doi.org/10.1002/jcc.20065CrossRefGoogle Scholar
  13. 13.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, 1987)Google Scholar
  14. 14.
    U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103(19), 8577 (1995).  https://doi.org/10.1063/1.470117. http://scitation.aip.org/content/aip/journal/jcp/103/19/10.1063/1.470117CrossRefGoogle Scholar
  15. 15.
    R.D. Skeel, J.J. Biesiadecki, Ann. Numer. Math. 1, 191 (1994)MathSciNetGoogle Scholar
  16. 16.
    W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79(2), 926 (1983).  https://doi.org/10.1063/1.445869CrossRefGoogle Scholar
  17. 17.
    G.J. Martyna, D.J. Tobias, M.L. Klein, J. Chem. Phys. 101(5), 4177 (1994).  https://doi.org/10.1063/1.467468. http://link.aip.org/link/?JCP/101/4177/1CrossRefGoogle Scholar
  18. 18.
    S.E. Feller, Y. Zhang, R.W. Pastor, B.R. Brooks, J. Chem. Phys. 103(11), 4613 (1995).  https://doi.org/10.1063/1.470648. http://link.aip.org/link/?JCP/103/4613/1CrossRefGoogle Scholar
  19. 19.
    L. Wang, R.A. Friesner, B.J. Berne, J. Phys. Chem. B 115(30), 9431 (2011).  https://doi.org/10.1021/jp204407dCrossRefGoogle Scholar
  20. 20.
    S. Jo, W. Jiang, Comput. Phys. Commun. 197, 304 (2015).  https://doi.org/10.1016/j.cpc.2015.08.030CrossRefGoogle Scholar
  21. 21.
    G. Settanni, J. Zhou, T. Suo, S. Schöttler, K. Landfester, F. Schmid, V. Mailänder, Nanoscale 9(6), 2138 (2017).  https://doi.org/10.1039/C6NR07022A. http://pubs.rsc.org/en/content/articlelanding/2017/nr/c6nr07022aCrossRefGoogle Scholar
  22. 22.
    G. Settanni, J. Zhou, F. Schmid, J. Phys. Conf. Ser. 921(1), 012002 (2017)CrossRefGoogle Scholar
  23. 23.
    D. Zhang, S.H. Lahasky, L. Guo, C.U. Lee, M. Lavan, Macromolecules 45(15), 5833 (2012).  https://doi.org/10.1021/ma202319g. URL https://doi.org/10.1021/ma202319g
  24. 24.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Gr. 14, 33 (1996)CrossRefGoogle Scholar
  25. 25.
    M. Seeber, M. Cecchini, F. Rao, G. Settanni, A. Caflisch, Bioinformatics 23(19), 2625 (2007)CrossRefGoogle Scholar
  26. 26.
    L. Tüting, W. Ye, G. Settanni, F. Schmid, B. Wolf, R. Ahijado-Guzmann, C. Sönnichsen, J. Phys. Chem. C 121, 22396 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Kollman, L. Pandi, M. Sawaya, M. Riley, R. Doolittle, Biochemistry 48(18), 3877 (2009).  https://doi.org/10.1021/bi802205gCrossRefGoogle Scholar
  28. 28.
    S. Sugio, A. Kashima, S. Mochizuki, M. Noda, K. Kobayashi, Protein Eng. 12(6), 439 (1999)CrossRefGoogle Scholar
  29. 29.
    G. Fiorin, M.L. Klein, J. Hénin, Mol. Phys. 111(22–23), 3345 (2013)CrossRefGoogle Scholar
  30. 30.
    S. Köhler, F. Schmid, G. Settanni, Langmuir 31(48), 13180 (2015).  https://doi.org/10.1021/acs.langmuir.5b03371. PMID: 26569042CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Timo Schafer
    • 1
  • Christian Muhl
    • 2
  • Matthias Barz
    • 2
  • Friederike Schmid
    • 1
  • Giovanni Settanni
    • 1
    Email author
  1. 1.Institut für Physik, Johannes Gutenberg UniversityMainzGermany
  2. 2.Institut für Organische Chemie, Johannes Gutenberg UniversityMainzGermany

Personalised recommendations