Interactions Between Blood Proteins and Nanoparticles Investigated Using Molecular Dynamics Simulations
- 2 Citations
- 543 Downloads
Abstract
In the development of new therapeutic agents based on nanoparticles it is of fundamental importance understanding how these substances interact with the underlying biological milieu. Our research is focussed on simulating in silico these interactions using accurate atomistic models, and gather from these information general pictures and simplified models of the underlying phenomena. Here we report results about the interactions of blood proteins with promising hydrophilic polymers used for the coating of therapeutic nanoparticles, about the salt dependent behavior of one of these polymers (poly-(ethylene glycol)) and about the interactions of blood proteins with silica, one of the most used materials for the production of nanoparticles.
Notes
Acknowledgements
TS gratefully acknowledges financial support from the Graduate School Materials Science in Mainz. GS gratefully acknowledges financial support from the Max-Planck Graduate Center with the University of Mainz. We gratefully acknowledge support with computing time from the HPC facility Hazelhen at the High performance computing center Stuttgart and the HPC facility Mogon at the university of Mainz. This work was supported by the German Science Foundation within SFB 1066 project Q1.
References
- 1.K. Cho, X. Wang, S. Nie, Z.G. Chen, D.M. Shin, Clin. Cancer Res. 14(5), 1310 (2008). https://doi.org/10.1158/1078-0432.CCR-07-1441. http://clincancerres.aacrjournals.org/content/14/5/1310.abstractCrossRefGoogle Scholar
- 2.M.P. Monopoli, C. Aberg, A. Salvati, K.A. Dawson, Nat. Nanotechnol. 7(12), 779 (2012). https://doi.org/10.1038/nnano.2012.207. URL http://dx.doi.org/10.1038/nnano.2012.207CrossRefGoogle Scholar
- 3.A. Lesniak, F. Fenaroli, M.P. Monopoli, C. Aberg, K.A. Dawson, A. Salvati, ACS Nano 6(7), 5845 (2012). https://doi.org/10.1021/nn300223w. URL http://dx.doi.org/10.1021/nn300223wCrossRefGoogle Scholar
- 4.D. Frenkel, B. Smit, Understanding Molecular Simulations, Computational Science, vol. 1, 2nd edn. (Academic Press, 2002)Google Scholar
- 5.A.D. MacKerell, D. Bashford, Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, M. Karplus, J. Phys. Chem. B 102(18), 3586 (1998). https://doi.org/10.1021/jp973084f. URL http://pubs.acs.org/doi/abs/10.1021/jp973084fCrossRefGoogle Scholar
- 6.K. Lindorff-Larsen, S. Piana, R.O. Dror, D.E. Shaw, Science 334(6055), 517 (2011). https://doi.org/10.1126/science.1208351. http://www.sciencemag.org/cgi/content/abstract/sci;334/6055/517CrossRefGoogle Scholar
- 7.H. Heinz, T.J. Lin, R.K. Mishra, F.S. Emami, Langmuir 29(6), 1754 (2013). https://doi.org/10.1021/la3038846. URL http://dx.doi.org/10.1021/la3038846. PMID: 23276161CrossRefGoogle Scholar
- 8.H. Lee, R.M. Venable, A.D. Mackerell, R.W. Pastor, Biophys. J. 95(4), 1590 (2008). https://doi.org/10.1529/biophysj.108.133025CrossRefGoogle Scholar
- 9.D.T. Mirijanian, R.V. Mannige, R.N. Zuckermann, S. Whitelam, J. Comput. Chem. 35(5), 360 (2014). https://doi.org/10.1002/jcc.23478CrossRefGoogle Scholar
- 10.K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A.D. Mackerell, J. Comput. Chem. 31(4), 671 (2010). https://doi.org/10.1002/jcc.21367. URL http://dx.doi.org/10.1002/jcc.21367
- 11.J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 26, 1781 (2005)CrossRefGoogle Scholar
- 12.A.D. Mackerell, M. Feig, C.L. Brooks, J. Comput. Chem. 25(11), 1400 (2004). https://doi.org/10.1002/jcc.20065CrossRefGoogle Scholar
- 13.M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, 1987)Google Scholar
- 14.U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103(19), 8577 (1995). https://doi.org/10.1063/1.470117. http://scitation.aip.org/content/aip/journal/jcp/103/19/10.1063/1.470117CrossRefGoogle Scholar
- 15.R.D. Skeel, J.J. Biesiadecki, Ann. Numer. Math. 1, 191 (1994)MathSciNetGoogle Scholar
- 16.W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79(2), 926 (1983). https://doi.org/10.1063/1.445869CrossRefGoogle Scholar
- 17.G.J. Martyna, D.J. Tobias, M.L. Klein, J. Chem. Phys. 101(5), 4177 (1994). https://doi.org/10.1063/1.467468. http://link.aip.org/link/?JCP/101/4177/1CrossRefGoogle Scholar
- 18.S.E. Feller, Y. Zhang, R.W. Pastor, B.R. Brooks, J. Chem. Phys. 103(11), 4613 (1995). https://doi.org/10.1063/1.470648. http://link.aip.org/link/?JCP/103/4613/1CrossRefGoogle Scholar
- 19.L. Wang, R.A. Friesner, B.J. Berne, J. Phys. Chem. B 115(30), 9431 (2011). https://doi.org/10.1021/jp204407dCrossRefGoogle Scholar
- 20.S. Jo, W. Jiang, Comput. Phys. Commun. 197, 304 (2015). https://doi.org/10.1016/j.cpc.2015.08.030CrossRefGoogle Scholar
- 21.G. Settanni, J. Zhou, T. Suo, S. Schöttler, K. Landfester, F. Schmid, V. Mailänder, Nanoscale 9(6), 2138 (2017). https://doi.org/10.1039/C6NR07022A. http://pubs.rsc.org/en/content/articlelanding/2017/nr/c6nr07022aCrossRefGoogle Scholar
- 22.G. Settanni, J. Zhou, F. Schmid, J. Phys. Conf. Ser. 921(1), 012002 (2017)CrossRefGoogle Scholar
- 23.D. Zhang, S.H. Lahasky, L. Guo, C.U. Lee, M. Lavan, Macromolecules 45(15), 5833 (2012). https://doi.org/10.1021/ma202319g. URL https://doi.org/10.1021/ma202319g
- 24.W. Humphrey, A. Dalke, K. Schulten, J. Mol. Gr. 14, 33 (1996)CrossRefGoogle Scholar
- 25.M. Seeber, M. Cecchini, F. Rao, G. Settanni, A. Caflisch, Bioinformatics 23(19), 2625 (2007)CrossRefGoogle Scholar
- 26.L. Tüting, W. Ye, G. Settanni, F. Schmid, B. Wolf, R. Ahijado-Guzmann, C. Sönnichsen, J. Phys. Chem. C 121, 22396 (2017)CrossRefGoogle Scholar
- 27.J. Kollman, L. Pandi, M. Sawaya, M. Riley, R. Doolittle, Biochemistry 48(18), 3877 (2009). https://doi.org/10.1021/bi802205gCrossRefGoogle Scholar
- 28.S. Sugio, A. Kashima, S. Mochizuki, M. Noda, K. Kobayashi, Protein Eng. 12(6), 439 (1999)CrossRefGoogle Scholar
- 29.G. Fiorin, M.L. Klein, J. Hénin, Mol. Phys. 111(22–23), 3345 (2013)CrossRefGoogle Scholar
- 30.S. Köhler, F. Schmid, G. Settanni, Langmuir 31(48), 13180 (2015). https://doi.org/10.1021/acs.langmuir.5b03371. PMID: 26569042CrossRefGoogle Scholar