Passive Vibration Control Using Viscoelastic Materials

  • D. A. RadeEmail author
  • J.-F. Deü
  • D. A. Castello
  • A. M. G. de Lima
  • L. Rouleau
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 69)


This chapter is devoted to the use of viscoelastic materials as a strategy intended for passive vibration control in mechanical systems. It provides a review of the theoretical foundations underlying the constitutive modeling of the viscoelastic behavior, and the association of constitutive models with modern numerical resolution procedures, especially the finite element method. This currently enables the accurate prediction of the dynamic behavior of rather complex structural systems featuring viscoelastic dampers, duly accounting for the particular characteristics of the viscoelastic behavior, namely the memory effect and the dependence of stiffness and damping properties on frequency and temperature. Other relevant aspects considered are: (i) model condensation techniques, intended to reduce the computation cost involved in the evaluation of the response of viscoelastic structures using finite element models with large numbers of degrees-of-freedom; (ii) the identification of viscoelastic constitutive models from experimental data. In addition, some applications of viscoelastic materials to structures of engineering interest are presented to illustrate the use of some techniques discussed.


  1. 1.
    Rao, M.D.: Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. In: USA Symposium on Emerging Trends in Vibration and Noise Engineering, India (2001)Google Scholar
  2. 2.
    Zhou, X.Q., Yu, D.Y., Shao, X.Y., Zhang, S.Q., Wang, S.: Research and applications of viscoelastic vibration damping materials: a review. Compos. Struct. 136, 460–480 (2016)CrossRefGoogle Scholar
  3. 3.
    Nashif, A.D., Jones, D.I.G., Henderson, J.P.: Vibration Damping, p. 1985. Wiley, New York (1985)Google Scholar
  4. 4.
    Bobillot, A., Balmès, E.: Analysis and design tools for structures damped by viscoelastic materials. In: International Modal Analysis Conference—IMAC, Los Angeles (2002)Google Scholar
  5. 5.
    Christensen, R.M.: Theory of Viscoelasticity. Dover Publications, New York, NY (2003)Google Scholar
  6. 6.
    Guillot, F.M., Trivett, D.H.: Complete elastic characterization of viscoelastic materials by dynamic measurements of the complex bulk and Young’s moduli as a function of temperature and hydrostatic pressure. J. Sound Vib. 330, 3334–3351 (2011)CrossRefGoogle Scholar
  7. 7.
    Pritz, T.: Measurement methods of complex Poisson’s ratio of viscoelastic materials. Appl. Acoust. 60, 279–292 (2000)CrossRefGoogle Scholar
  8. 8.
    Kaliske, M., Rothert, H.: Formulation and implementation of three-dimensional viscoelasticity at small and finite strains. Comput. Mech. 19, 228–239 (1997)CrossRefGoogle Scholar
  9. 9.
    Pritz, T.: Frequency dependences of complex moduli and complex Poisson’s ratio of real solid materials. J. Sound Vib. 214, 83–104 (1998)CrossRefGoogle Scholar
  10. 10.
    Ferry, J.D.: Viscoelastic properties of polymers. John Wiley & Sons (1980)Google Scholar
  11. 11.
    Emri, I.: Rheology of solid polymers. Rheol. Rev. 3, 49–100 (2005)Google Scholar
  12. 12.
    Dealy, J., Plazek, D.: Time-temperature superposition - a users guide. Rheol. Bull. 78, 16–31 (2009)Google Scholar
  13. 13.
    Soovere J, Drake ML (1984) Aerospace structures technology damping design guide. Technology review, Technical report, DTIC Document, aFWAL-TR-84-3089, vol. IGoogle Scholar
  14. 14.
    Rouleau, L., Deü, J.-F., Legay, A., Le Lay, F.: Application of Kramers-Kronig relations to time-temperature superposition for viscoelastic materials. Mech. Mat. 65, 66–75 (2013)Google Scholar
  15. 15.
    Thorin, A., Azoug, A., Constantinescu, A.: Influence of prestrain on mechanical properties of highly-filled elastomers: measurements and modeling. Polym. Testing 31, 978–986 (2012)Google Scholar
  16. 16.
    Martinez-Agirre, M., Illescas, S., Elejabarrieta, M.J.: Characterisation and modelling of prestrained viscoelastic films. Int. J. Adh. Adhes. 50, 183–190 (2014)Google Scholar
  17. 17.
    Wineman, A.S., Rajagopal, K.R.: Mechanical Response of Polymers. Cambridge University Press, Cambridge (2000)Google Scholar
  18. 18.
    Lakes, R.S.: Viscoelastic Solids. CRC Press (1998)Google Scholar
  19. 19.
    Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College, London (2005)Google Scholar
  20. 20.
    Podlubny, I.: Fractional Differential Equations. Academic Press (1999)Google Scholar
  21. 21.
    Yin, D., Duan, X., Zhou, X., Li, Y.: Time-based fractional longitudinal-transverse strain model for viscoelastic solids. Mech. Time-Depend. Mater. 18, 329–337 (2014)CrossRefGoogle Scholar
  22. 22.
    Zhang, G., Yang, H., Xu, Y.: A surrogate-model-based identification of fractional viscoelastic constitutive parameters. Mech. Time-Depend. Mater. 1, 1–19 (2015)CrossRefGoogle Scholar
  23. 23.
    Ghoreishy, M.H.R., Firouzbakht, M., Naderi, G.: Parameter determination and experimental verification of Bergström-Boyce hysteresis model for rubber compounds reinforced by carbon black blends. Mater. Design 53, 457–465 (2014)CrossRefGoogle Scholar
  24. 24.
    Lion, A.: On the thermodynamics of fractional damping elements. Contin. Mech. Thermodyn. 9, 83–96 (1997)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, 1st edn. Springer, New York, NY (2005)Google Scholar
  26. 26.
    Aster, R.C., Borchers, C., Thurber, C.H.: Parameter Estimation and Inverse Problems, 2nd edn. Academic Press (2013)Google Scholar
  27. 27.
    Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd edn. Chapman & Hall/CRC, Boca Raton, Florida (2004)Google Scholar
  28. 28.
    Melchers, R.E., Beck, A.T.: Structural Reliability Analysis and Prediction, 3rd edn. Wiley (2018)Google Scholar
  29. 29.
    Smith, R.C.: Uncertainty Quantification: Theory, Implementation, and Applications. SIAM, Computational Science and Engineering (2013)Google Scholar
  30. 30.
    Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, New York, NY (2010)Google Scholar
  31. 31.
    Gamermam, D., Lopes, H.F.: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, 2nd edn. Chapman and Hall/CRC (2006)Google Scholar
  32. 32.
    Hughes, T.J.R.: The Finite Element Method—Linear Static and Dynamic Finite Element Analysis. Prentice Hall Inc., Englewood Cliffs, N.J. (1987)zbMATHGoogle Scholar
  33. 33.
    Khatua, T.P., Cheung, Y.K.: Bending and vibration of multilayer sandwich beams and plates. Int. J. Numer. Methods Eng. 6, 11–24 (1973)CrossRefGoogle Scholar
  34. 34.
    Carrera, E.: Historical review of Zig-Zag theories for multilayered plates and shells. Appl. Mech. Rev. 56(3), 287–308 (2003)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Austin, E.M.: Variations on modeling of constrained-layer damping treatments. Shock Vib. Digest 31(4), 275–280 (1999)CrossRefGoogle Scholar
  36. 36.
    Rouleau, L., Deü, J.-F., Legay, A.: A comparison of model reduction techniques based on modal projection for structures with frequency-dependent damping. Mech. Syst. Signal Pr. 90, 110–125 (2017)CrossRefGoogle Scholar
  37. 37.
    Vasques, C., Moreira, R., Rodrigues, J.: Viscoelastic damping technologies—Part I: Modeling and finite element implementation. J. Adv. Res. Mech. Eng. 1, 76–95 (2010)Google Scholar
  38. 38.
    Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. Advances in Design and Control. SIAM, Philadelphia, PA, USA (2005)Google Scholar
  39. 39.
    Hetmaniuk, U., Tezaur, R., Farhat, C.: Review and assessment of interpolatory model order reduction methods for frequency response structural dynamics and acoustics problems. Int. J. Numer. Methods Eng. 90, 1636–1662 (2012)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Craig, R.R., Chang, C.-J.: A review of substructure coupling methods for dynamic analysis. Adv. Eng. Sci. 2, 393–408 (1976)Google Scholar
  41. 41.
    de Klerk, D., Rixen, D.J., Voormeeren, S.N.: General framework for dynamic substructuring: history, review and classification of techniques. AIAA J. (2008)Google Scholar
  42. 42.
    Balmès, E.: Parametric families of reduced finite element models. Mech. Syst. Signal Pr. 10, 381–394 (1996)CrossRefGoogle Scholar
  43. 43.
    Balmès, E., Bobillot, A.: Analysis and design tool for structures damped by viscoelastic materials. In: Proceedings of the 21st ISMA Conference, Leuven, Belgium (2002)Google Scholar
  44. 44.
    Hu, B.-G., Dokaishi, M., Mansour, W.: A modified MSE method for viscoelastic systems: a weighted stiffness matrix approach. Trans. ASME J. Appl. Mech. 117, 226–231 (1995)Google Scholar
  45. 45.
    Johnson, C., Kienholz, D., Rogers, L.: Finite element prediction of damping in beams with constrained vicoelastic layers. Shock Vib. 1, 71–81 (1980)Google Scholar
  46. 46.
    Lin, R., Lim, M.: Complex eigensensitivity-based characterization of structures with viscoelastic damping. J. Acoust. Soc. Am. 100, 3182–3191 (1996)CrossRefGoogle Scholar
  47. 47.
    Plouin, A.-S., Balmès, E.: Pseudo-modal representations of large models with viscoelastic behavior. In: Proceedings of the 16th ISMA Conference, Leuven, Belgium (1998)Google Scholar
  48. 48.
    Zhang, S., Chen, H.: A study on the damping characteristics of laminated composites with integral viscoelastic layers. Compos. Struct. 74, 63–69 (2006)CrossRefGoogle Scholar
  49. 49.
    Dickens, J., Nakagawa, J., Wittbrodt, M.: A critique of mode acceleration and modal truncation augmentation methods for modal response analysis. Comput. Struct. (1997)Google Scholar
  50. 50.
    Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43, 235–286 (2001)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Daya, E., Potier-Ferry, M.: A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures. Comput. Struct. 79 (2001)Google Scholar
  52. 52.
    Tran, G., Ouisse, M., Bouhaddi, N.: A robust component mode synthesis method for stochastic damped virboacoustics. Mech. Syst. Signal Pr. 24, 164–181 (2010)CrossRefGoogle Scholar
  53. 53.
    de Lima, A., da Silva, A., Rade, D., Bouhaddi, N.: Component mode synthesis combining robust enriched Ritz approach for viscoelastically damped structures. Eng. Struct. (2010)Google Scholar
  54. 54.
    Baker, G.J., Graves-Moris, P.: Padé Approximants. Cambridge University Press (1996)Google Scholar
  55. 55.
    Avery, P., Farhat, C., Reese, G.: Fast frequency sweep computations using a multi-point Padé-based reconstruction method and an efficient iterative solver. Int. J. Numer. Methods Eng. 69, 2848–2875 (2007)CrossRefGoogle Scholar
  56. 56.
    Chazot, J.-D., Nennig, B., Chettah, A.: Harmonicresponse computation of viscoelastic multilayered structures using a ZPST shell element. J. Sound Vib. 89, 2522–2530 (2011)Google Scholar
  57. 57.
    Rumpler, R., Göransson, P.: An assessment of two popular Padé-based approaches for fast frequency sweeps of time-harmonic finite element problems. In: Proceedings of Acoustics’17, Boston, USA (2017)Google Scholar
  58. 58.
    Millithaler, P., Dupont, J.-B., Ouisse, M., Sadoulet-Reboul, E., Bouhaddi, N.: VIscoelastic property tuning for reducing noise radiated by switched-reluctance machines. J. Sound Vib. 407, 191–208 (2017)CrossRefGoogle Scholar
  59. 59.
    Hirsou, D., Le Quere, E., Magnier, M., Selosse, D.: Rotary electric machine, and in particular motor vehicle alternator, comprising a stator elastically mounted in a heat-conductive resin. European patent EP1249064B1 (2002)Google Scholar
  60. 60.
    Hernandéz, W.P., Castello, D.A., Roitman, N., Magluta, C.: Thermorheologically simple materials: a Bayesian framework for model calibration and validation. J. Sound Vib. 402(18), 14–30 (2017)CrossRefGoogle Scholar
  61. 61.
    Borges, F.C.L., Castello, D.A., Magluta, C., Rochinha, F.A., Roitman, N.: An experimental assessment of internal variables constitutive models for viscoelastic materials. Mech. Syst. Signal Process. 50–51, 27–40 (2015)CrossRefGoogle Scholar
  62. 62.
    Castello, D.A., Rochinha, F.A., Roitman, N., Magluta, C.: Constitutive parameter estimation of a viscoelastic model with internal variables. Mech. Syst. Signal Process. 22(8), 1840–1857 (2008)CrossRefGoogle Scholar
  63. 63.
    Zhang, E., Chazot, J.D., Antoni, J., Hamdia, M.: Bayesian characterization of Young’s modulus of viscoelastic materials in laminated structures. J. Sound Vib. 332(16), 3654–3666 (2013)CrossRefGoogle Scholar
  64. 64.
    Faming, L., Liu, C., Carroll, R.J.: Advanced Markov Chain Monte Carlo Methods—Learning from Past Samples. Wiley, Chichester, Wester Sussex (2010)zbMATHGoogle Scholar
  65. 65.
    Wright, J.R., Cooper, J.E.: Introduction to Aeroelasticity and Loads, 2nd edn. Wiley (2015)Google Scholar
  66. 66.
    NASA: Control of Aeroelastic Response: Taming the Threats. NASA Historical Series 100 (2004)Google Scholar
  67. 67.
    Lacarbonara, W., Cetraro, M.: Flutter control of a lifting surface via visco-hysteretic vibration absorbers. Int. J. Aeronaut. Space Sci. 12, 331–345 (2011)Google Scholar
  68. 68.
    Merrett, C.G., Hilton, H.H.: Elastic and viscoelastic panel flutter in incompressible, subsonicandsupersonicflows. J. Aeroelast. Struct. Dyn. 2(2010), 53–80 (2010)Google Scholar
  69. 69.
    Cunha-Filho de Lima, A.M.G., Donadon, M.V., Leão, L.S.: Flutter suppression of plates using passive constrained viscoelastic layers. Mech. Syst. Signal Process. 79, 99–111 (2016)CrossRefGoogle Scholar
  70. 70.
    Martins, P.C.O., DA Guimarães, Pereira, Marques, F.D., Rade, D.A.: Numerical and experimental investigation of aeroviscoelastic systems. Mech. Syst. Signal Process. 85, 680–697 (2017)CrossRefGoogle Scholar
  71. 71.
    Cunha-Filho, A.G., Briend, Y.P.J., Lima, A.M.G., Donadon, M.V.: An efficient iterative model reduction method for aeroviscoelastic panel flutter analysis in the supersonic regime. Mech. Syst. Signal Process. 575–588 (2018)Google Scholar
  72. 72.
    de Lima, A.M.G., da Silva, A.R., Rade, D.A., Bouhaddi, N.: Component mode synthesis combining robust enriched Ritz approach for viscoelastically damped structures. Eng. Struct. 32, 1479–1488 (2010)CrossRefGoogle Scholar
  73. 73.
    Bobillot, A., Balmés, A.: Iterative techniques for eigenvalue solutions of damped structures coupled with fluids. AIAA J. 32, 2002-1391 (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • D. A. Rade
    • 1
    Email author
  • J.-F. Deü
    • 2
  • D. A. Castello
    • 3
  • A. M. G. de Lima
    • 4
  • L. Rouleau
    • 2
  1. 1.Mechanical Engineering DivisionAeronautics Institute of TechnologySão José dos CamposBrazil
  2. 2.LMSSC, CNAMParisFrance
  3. 3.Department of Mechanical EngineeringFederal University of Rio de JaneiroRio de JaneiroBrazil
  4. 4.School of Mechanical EngineeringFederal University of UberlâdiaRio de JaneiroBrazil

Personalised recommendations