Advertisement

Identification of Nonlinearities in Mechanical Systems Using Recurrence Plots

  • J. C. Jauregui-CorreaEmail author
Chapter
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 69)

Abstract

The identification of nonlinear vibrations in mechanical systems is an unsolved problem. The structure of the measured data and waveforms have been studied for many years, and different techniques have been applied. Nevertheless, there is no single technique for identifying the nonlinear parameters. Parameter identification can be conducted either with a parametric approach or with a non-parametric approach. Among parametric approaches many researchers have work with the Hilbert transform, continuous and discrete wavelet transform, nonlinear modal analysis, phase space. Meanwhile, nonparametric procedures include fractal analysis, Hurt factor, and approximate entropy. In this paper, the recurrence plots are applied for the identification of nonlinear parameters. Recurrence plots are constructed from the phase space. To calibrate the method, the recurrence plots were obtained from two theoretical models, a Van der Pol pendulum, and a Duffing mass-lump model. Then, the recurrence plots were constructed from a mechanical gearbox. Recurrence plots are an alternative solution for the identification of nonlinearities in mechanical systems.

Keywords

Recurrence plot Nonlinear systems Parameter identification 

References

  1. 1.
    Webber, C.L., Loana, C., Marwan, N. (eds.): Recurrence Plots and Their Quantifications: Expanding Horizons. In: Proceedings of the 6th International Symposium on Recurrence Plots, June 2015Google Scholar
  2. 2.
    Eckmann, J., Oliffson, S., Ruelle, D.: Recurrence plots of dynamical systems. Eur. Lett. 4(9), 973–977 (1987)CrossRefGoogle Scholar
  3. 3.
    Marwan, N., Webber, C.L.: Mathematical and computational foundations of recurrence quantifications. In: Marwan, N., Webber, C.L. (eds.) Recurrence Quantification Analysis, pp. 3–43. Springer International Publishing, Switzerland (2015)Google Scholar
  4. 4.
    Thiel, M., Romano, M., Kurths, J.: Spurious structures in recurrence plots induced by embedding. Nonlinear Dyn. 44, 299–305 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fontaine, S., Dia, S., Renner, M.: Nonlinear friction dynamics on fibrous materials, application to the characterization of surface quality. Part I: Global characterization of phase spaces. 625–646 (2011)Google Scholar
  6. 6.
    Faure, P., Lesne, A.: Estimating Kolmogorov entropy from recurrence plots. In: Webber, C.L., Marwan, N. (eds.) Recurrence Quantification Analysis, pp. 45–63. Springer International Publishing, Switzerland (2015)Google Scholar
  7. 7.
    Leonardi, G.: A method for the computation of entropy in the recurrence quantification analysis of categorical time series. Phys. A 512, 824–836 (2018)CrossRefGoogle Scholar
  8. 8.
    Kwuimy, C., Samadani, M., Nataraj, C.: Bifurcation analysis of a nonlinear pendulum using recurrence and statistical methods: applications to fault diagnostics. Nonlinear Dyn. 76, 1963–1975 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ramdani, S., Bouchara, F., Lagarde, J., Lesne, A.: Recurrence plots of discrete-time Gaussian stochastic processes. Phys. D 330, 17–31 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Spiegel, S., Schultz, D., Marwan, N.: Approximate recurrence quantification analysis (aRQA) in code of best practice. In: Schultz, D., Marwan, N. (eds.) Recurrence Plots and Their Quantification: Expanding Horizons, pp. 113–135. Springer International Publishing, Switzerland (2016)CrossRefGoogle Scholar
  11. 11.
    Sipers, A., Borm, P., Peeters, R.: Robust reconstruction of a signal from its unthresholded recurrence plot subject to disturbances. Phys. Lett. A 381(6), 604–615 (2017)CrossRefGoogle Scholar
  12. 12.
    Tang, L., Lv, H., Yang, F., Yu, L.: Complexity testing techniques for time series data: a comprehensive literature review. Chaos Solitons Fractals 81, 117–135 (2015)CrossRefGoogle Scholar
  13. 13.
    Pham, T.D., Yan, H.: Spatial-dependence recurrence sample entropy. Phys. A 494, 581–590 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Girault, J.-M.: Recurrence and symmetry of time series: application to transition detection. Chaos Solitons Fractals 77, 11–28 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Belaire-Franch, J., Contreras, D.: Recurrence plots in nonlinear time series analysis: free software. J. Stat. Softw. 7(9), 1–18 (2002)CrossRefGoogle Scholar
  16. 16.
    Carrión, A., Miralles, R.: New Insights for testing linearity and complexity with surrogates: a recurrence plot approach. In: Webber, C.L. (ed.) Recurrence Plots and Their Quantifications: Expanding Horizons. Springer Proceedings in Physics, pp. 91–112 (2016)Google Scholar
  17. 17.
    Le Bot, O., Mars, J.I., Gervaise, C.: Similarity matrix analysis and divergence measures for statistical detection of unknown deterministic signals hidden in additive noise. Phys. Lett. A 379(40–41), 2597–2609 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Schultz, D., Spiegel, S., Marwan, N., Albayrak, S.: Approximation of diagonal line based measures in recurrence quantification analysis. Phys. Lett. A 379(14–15), 997–1011 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Feeny, B.F., Lin, G.: Fractional derivatives applied to phase-space reconstructions. Nonlinear Dyn. 85–99 (2004)Google Scholar
  20. 20.
    Lin, G., Feeny, B., Das, T.: Fractional derivative reconstruction of forced oscillators. Nonlinear Dyn. 55, 239–250 (2009)CrossRefGoogle Scholar
  21. 21.
    Feeny, B.F., Liang, J.W.: Phase-space reconstructions and stick-slip. Nonlinear Dyn. 39–57 (1997)Google Scholar
  22. 22.
    Viana, E., Rubinger, R., Albuquerque, H., Dias, F., Oliveira, A., Ribeiro, G.: Periodicity detection on the parameter-space of a forced Chua’s circuit. Nonlinear Dyn. 385–392 (2012)Google Scholar
  23. 23.
    Batista, C.A.S., Szezech, J.D., Batista, A.M., Macau, E.E.N., Viana, R.L.: Synchronization of phase oscillators with coupling mediated by a diffusing substance. Phys. A 470, 236–248 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Jeevarekha, A., Sabarathinam, S., Thamilmaran, K., Philominathan, P.: Analysis of 4D autonomous system with volume-expanding phase space. Nonlinear Dyn. 84, 2273–2284 (2016)CrossRefGoogle Scholar
  25. 25.
    Prakash, J., Roy, S.B.K.: The simplest 4-D chaotic system with line of equilibria, chaotic 2-torus and 3-torus behaviour. Nonlinear Dyn. 89(3), 1845–1862 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kiss, Z., Hudson, J.L.: Synchronization analysis of coupled noncoherent oscillators. 2, 135–149 (2006)Google Scholar
  27. 27.
    Jana, D., Agrawal, R., Kumar, R.: Top-predator interference and gestation delay as determinants of the dynamics of a realistic model food chain. Chaos Solitons Fractals 69, 50–63 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kwuimy, C.A.K., Kadji, H.G.E.: Recurrence analysis and synchronization of oscillators with coexisting attractors. Phys. Lett. A 378(30–31), 2142–2150 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kwuimy, C.A.K., Nataraj, C.: Recurrence and Joint Recurrence Analysis of Multiple Attractors Energy Harvesting System (2015)Google Scholar
  30. 30.
    Kwuimy, C.A.K., Nataraj, S.A.A.C.: Characterization of the vibration transmitted in the human arm using selected recurrence quantification parameters. Nonlinear Dyn. 88(4), 2873–2887 (2017)CrossRefGoogle Scholar
  31. 31.
    Syta, A., Litak, G.: Vibration Analysis in Cutting Materials, pp. 279–290 (2014)Google Scholar
  32. 32.
    Elias, J., Namboothiri, V.N.N.: Cross-recurrence plot quantification analysis of input and output signals for the detection of chatter in turning. Nonlinear Dyn. 76, 255–261 (2014)CrossRefGoogle Scholar
  33. 33.
    Stender, M., Tiedemann, M., Hoffmann, N., Oberst, S.: Impact of an irregular friction formulation on dynamics of a minimal model for brake squeal q. Mech. Syst. Signal Process. 107, 439–451 (2018)CrossRefGoogle Scholar
  34. 34.
    Chelidze, T., Lursmanashvili, O., Matcharashvili, N., Zhukova, N., Mepharidze, E.: High-order synchronization of stick-slip process: experiments on spring-slider system. Nonlinear Dyn. 59, 259–275 (2010)CrossRefGoogle Scholar
  35. 35.
    Chelidze, T., Matcharashvili, T.: Dynamical Patterns in Seismology, pp. 291–334 (2014)Google Scholar
  36. 36.
    Litak, G., Górski, G., Mosdorf, R., Rysak, A.: Study of dynamics of two-phase flow through a minichannel by means of recurrences. Mech. Syst. Signal Process. 89, 48–57 (2017)CrossRefGoogle Scholar
  37. 37.
    Zhai, L., Zong, Y., Wang, H., Yan, C., Gao, Z.: Characterization of flow pattern transitions for horizontal liquid–liquid pipe flows by using multi-scale distribution entropy in coupled 3D phase space. Phys. A 469, 136–147 (2017)CrossRefGoogle Scholar
  38. 38.
    Xiong, H., Shang, P., Bian, S.: Detecting intrinsic dynamics of traffic flow with recurrence analysis and empirical mode decomposition. Phys. A 474, 70–84 (2017)CrossRefGoogle Scholar
  39. 39.
    Tang, J., Wang, Y., Wang, H., Zhang, S., Liu, F.: Dynamic analysis of traffic time series at different temporal scales: a complex networks approach. Phys. A 405, 303–315 (2014)CrossRefGoogle Scholar
  40. 40.
    Vlahogianni, E.I., Karlaftis, M.G.: Comparing traffic flow time-series under fine and adverse weather conditions using recurrence-based complexity measures. Nonlinear Dyn. 1949–1963 (2012)Google Scholar
  41. 41.
    Ukherjee, S., Ray, R., Samanta, R., Khondekar, M.: Nonlinearity and chaos in wireless network traffic. Chaos Solitons and Fractals 96, 23–29 (2017)CrossRefGoogle Scholar
  42. 42.
    Joelle, E., Bialonski, S., Marwan, N., Kurths, J., Geier, C., Lehnertz, K.: Evaluation of selected recurrence measures in discriminating pre-ictal and inter-ictal periods from epileptic EEG data. Phys. Lett. A 380(16), 1419–1425 (2016)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Puthanmadam, N., Hyttinen, J.: Characterization of dynamical systems under noise using recurrence networks: application to simulated and EEG data. Phys. Lett. A 378(46), 3464–3474 (2014)CrossRefGoogle Scholar
  44. 44.
    Yan, J., Wang, Y., Ouyang, G., Yu, T., Li, X.: Using max entropy ratio of recurrence plot to measure electrocorticogram changes in epilepsy patients. Phys. A 443, 109–116 (2016)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Saha, D., Shaw, P.K., Ghosh, S., Janaki, M.S., Iyengar, A.N.S.: Quantification of scaling exponent with crossover type phenomena for different types of forcing in DC glow discharge plasma. Phys. A 490, 300–310 (2018)CrossRefGoogle Scholar
  46. 46.
    Craciunescu, T., Murari, A.: Geodesic distance on Gaussian manifolds for the robust identification of chaotic systems. Nonlinear Dyn. 86(1), 677–693 (2016)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Jáuregui, J.C.: Phase diagram analysis for predicting nonlinearities and transient responses. In: Baddour, N. (ed.) Recent Advances in Vibrations Analysis, pp. 27–46. InTech (2011)Google Scholar
  48. 48.
    Letellier, C.: Estimating the Shannon entropy: recurrence plots versus symbolic dynamics. Phys. Rev. Lett. 96, 55–60 (2006)CrossRefGoogle Scholar
  49. 49.
    Gonzalez-Cruz, C.A., Jauregui-Correa, J.C., Herrera-Ruíz, G.: Nonlinear response of cantilever beams due to large geometric deformations: experimental validation. Stroj. Vestnik/J. Mech. Eng. 62(3), 187–196 (2016)CrossRefGoogle Scholar
  50. 50.
    Jauregui-Correa, J.C.: The effect of nonlinear traveling waves on rotating machinery. Mech. Syst. Signal Process. 39(1–2), 129–142 (2013)CrossRefGoogle Scholar
  51. 51.
    González-Cruz, C.A., Jáuregui-Correa, J.C., Domínguez-González, A., Lozano-Guzmán, A.: Effect of the coupling strength on the nonlinear synchronization of a single-stage gear transmission. Nonlinear Dyn. 85(1), 123–140 (2016)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Muszynska, A.: Rotordynamics. CRC Press, Taylor & Francis Group, Boca Raton (2005)CrossRefGoogle Scholar
  53. 53.
    Goldman, P., Muszynska, A., Bently, D.E.: Due rotor-to-stator. 6(2), 91–100 (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad Autonoma de QuerétaroSantiago de QuerétaroMexico

Personalised recommendations