Advertisement

Qualitative Investigations of Experiments Performed on 3D-FDM-printed Pantographic Structures Made out of PLA

  • Arion JuritzaEmail author
  • Hua Yang
  • Gregor Ganzosch
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 108)

Abstract

Additive manufacturing methods, commonly known as 3D printing, enable the design and manufacturing of complex and sophisticated material fabrics with a special substructure resulting in extraordinary macroscopic deformation behavior. Such a man-made structure is also referred to as a metamaterial. So called pantographic structures, which can be described as metamaterials with a substructure that is composed of two orthogonal arrays of beams connected by internal cylinders, were manufactured using fused deposition modeling technique. In order to further understand the peculiarity of its deformation behaviors, a plane sheet was also printed to be used as a comparison. Different types of experiments were performed and evaluated qualitatively by the means of digital image correlation being able to localize the initial area of out-of-plane movements in shearing tests for both specimen. Results of quasi-static standard tension and shearing tests indicate a resilient material behavior during high elastic deformations resulting in a high resistance against total failure of the structure. Furthermore, cyclic long-term tests show a viscoelastic deformation behavior of the thermoplastic material. PSs show linear as well as non-linear elastic deformation response in all experiments except the cyclic tension test.

Keywords

Experiment Metamaterial Pantographic structure Digital image correlation Elasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abali BE, Müller WH, Eremeyev VA (2015) Strain gradient elasticity with geometric nonlinearities and its computational evaluation. Mechanics of Advanced Materials and Modern Processes 1(4)Google Scholar
  2. Abali BE, Müller WH, dell’Isola F (2017) Theory and computation of higher gradient elasticity theories based on action principles. Archive of Applied Mechanics 87(9):1495–1510,  https://doi.org/10.1007/s00419-017-1266-5
  3. Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. International Journal of Solids and Structures 48(13):1962–1990Google Scholar
  4. Barchiesi E, Ganzosch G, Liebold C, Placidi L, Grygoruk R, Müller WH (2018a) Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation. Continuum Mechanics and Thermodynamics pp 1–13Google Scholar
  5. Barchiesi E, Spagnuolo M, Placidi L (2018b) Mechanical metamaterials: a state of the art. Mathematics and Mechanics of Solids p 1081286517735695Google Scholar
  6. Bensoussan A, Lions JL, Papanicolaou G (2011) Asymptotic analysis for periodic structures, vol 374. American Mathematical Soc.Google Scholar
  7. Boutin C, dell’Isola F, Giorgio I, Placidi L (2017) Linear pantographic sheets: Asymptotic micromacro models identification. Mathematics and Mechanics of Complex Systems 5(2):127–162Google Scholar
  8. Cennamo C, Chiaia B, Biagi VD, Placidi L (2014) Monitoring and compartmentalized structures. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 95(6):638–648Google Scholar
  9. Chen C, Fleck N (2002) Size effects in the constrained deformation of metallic foams. Journal of the Mechanics and Physics of Solids 50(5):955–977Google Scholar
  10. Cosserat E, Cosserat F (1896) Sur la théorie de l’élasticité. premier mémoire. In: Annales de la Faculté des sciences de Toulouse: Mathématiques, Gauthier-Villars et Fils, Imprimeurs-Libraires, vol 10 (3-4), pp I1–I116Google Scholar
  11. Cosserat E, Cosserat F (1909) Théorie des corps déformables. A. Hermann et fils,Google Scholar
  12. dell’Isola F, Sciarra G, Vidoli S (2009) Generalized hooke’s law for isotropic second gradient materials. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, pp rspa–2008Google Scholar
  13. Eringen AC (1968) Mechanics of micromorphic continua. In: Mechanics of Generalized Continua, Springer, pp 18–35Google Scholar
  14. Eringen AC, Suhubi ES (1964) Nonlinear theory of simple micro-elastic solids—i. International Journal of Engineering Science 2(2):189–203Google Scholar
  15. Ganzosch G, dell’Isola F, Turco E, Lekszycki T, Müller W (2017) Shearing tests applied to pantographic structures. Acta Polytechnica CTU Proceedings 7(1-6)Google Scholar
  16. Ganzosch G, Hoschke K, Lekszycki T, Giorgio I, Turco E, Müller WH (2018) 3d-measurements of 3d-deformations of pantographic structures. Technische Mechanik 38(3):233–245, DOI 10.24352/UB.OVGU-2018-031Google Scholar
  17. Ghosh S, Lee K, Moorthy S (1996) Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and voronoi cell finite element model. Computer methods in applied mechanics and engineering 132(1-2):63–116Google Scholar
  18. Gibson LJ (2005) Biomechanics of cellular solids. Journal of biomechanics 38(3):377–399Google Scholar
  19. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge university pressGoogle Scholar
  20. Kumar RS, McDowell DL (2004) Generalized continuum modeling of 2-d periodic cellular solids. International Journal of solids and structures 41(26):7399–7422Google Scholar
  21. Li J (2011) A micromechanics-based strain gradient damage model for fracture prediction of brittle materials–part i: Homogenization methodology and constitutive relations. International Journal of Solids and Structures 48(24):3336–3345Google Scholar
  22. Mindlin RD, Eshel N (1968) On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures 4(1):109–124Google Scholar
  23. Müller WH, Vilchevskaya EN (2017) Micropolar theory from the viewpoint of mesoscopic and mixture theories. Physical Mesomechanics 20(3):263–279Google Scholar
  24. Müller WH, Vilchevskaya EN (2018) Micropolar theory with production of rotational inertia: A rational mechanics approach. In: Generalized Models and Non-classical Approaches in Complex Materials 1, Springer, pp 581–606Google Scholar
  25. Noor AK (1988) Continuum modeling for repetitive lattice structures. Applied Mechanics Reviews 41(7):285–296Google Scholar
  26. Placidi L, Andreaus U, Giorgio I (2016a) Identification of two-dimensional pantographic structure via a linear d4 orthotropic second gradient elastic model. Journal of Engineering Mathematics 103(1):1–21Google Scholar
  27. Placidi L, Barchiesi E, Turco E, Rizzi NL (2016b) A review on 2D models for the description of pantographic fabrics. Zeitschrift für angewandte Mathematik und Physik 67(5):121Google Scholar
  28. Placidi L, Greco L, Bucci S, Turco E, Rizzi NL (2016c) A second gradient formulation for a 2d fabric sheet with inextensible fibres. Zeitschrift für angewandte Mathematik und Physik 67(5)Google Scholar
  29. Placidi L, Barchiesi E, Misra A (2018a) A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Mathematics and Mechanics of Complex Systems 6(2):77–100Google Scholar
  30. Placidi L, Misra A, Barchiesi E (2018b) Two-dimensional strain gradient damage modeling: a variational approach. Zeitschrift für angewandte Mathematik und Physik 69(3):56Google Scholar
  31. Rahali Y, Giorgio I, Ganghoffer J, Dell’Isola F (2015) Homogenization à la piola produces second gradient continuum models for linear pantographic lattices. International Journal of Engineering Science 97:148–172Google Scholar
  32. Sun C, Vaidya R (1996) Prediction of composite properties from a representative volume element. Composites Science and Technology 56(2):171–179Google Scholar
  33. Tekoğlu C, Onck PR (2008) Size effects in two-dimensional voronoi foams: a comparison between generalized continua and discrete models. Journal of the Mechanics and Physics of Solids 56(12):3541–3564Google Scholar
  34. Toupin RA (1962) Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis 11(1):385–414Google Scholar
  35. Yang H, Ganzosch G, Giorgio I, Abali BE (2018) Material characterization and computations of a polymeric metamaterial with a pantographic substructure. Zeitschrift für angewandte Mathematik und Physik 69(4):105Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Mechanics, Chair of Continuum Mechanics and Materials Theory, Technische Universität BerlinBerlinGermany

Personalised recommendations