Advertisement

Botrytis Gray Mold Nano- or Biocontrol: Present Status and Future Prospects

  • Esraa Gabal
  • Amal-Asran
  • Mohamed A. Mohamed
  • Kamel A. Abd-Elsalam
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Botrytis cinerea, the causal agent of grey mold disease, has a large number of hosts including dicotyledonous species as grapevine, strawberry, tomato, cucumber, and ornamental flowers. Much research has been conducted to fulfill the inevitable need for developing alternatives to the synthetic fungicides possessing antimicrobial activity and without any potential hazards to the environment. Nanotechnology has recently gained the interest regarding its potentiality to replace the use of fungicides through developing nano-based materials that can be effective against plant diseases and without any significant hazards. In this chapter, we spot the light on common approaches and tools used to control the grey mold disease, along with the recorded data regarding their affectivity and possible hazards. Moreover, we draw the present interest regarding developing more advanced solutions and their future prospects.

Keywords

Biofungicides Biological control Botrytis cinerea Grey mold Induced resistance Nanofungicides 

Notes

Acknowledgment

This research was supported by the Science and Technology Development Fund (STDF), Joint Egypt (STDF)-South Africa (NRF) Scientific Cooperation, Grant ID. 27837 to Kamel Abd-Elsalam.

References

  1. Abbasi PA, Al-Dahmani J, Sahin F, Hoitink HAJ, Miller SA (2002) Effect of compost amendments on disease severity and yield of tomato in conventional and organic production systems. Plant Dis 86:156–161CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abdel-Hafez SI, Nafady NA, Abdel-Rahim IR, Shaltout AM, Daròs JA, Mohamed MA (2016) Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech 6(2):199CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adebayo O, Dang T, Bélanger A, Khanizadeh S (2013) Antifungal studies of selected essential oils and a commercial formulation against Botrytis cinerea. J Food Res.  https://doi.org/10.5539/jfr.v2n1p217
  4. Ahlem H, Mohammed E, Badoc A, Ahmed L (2012) Effect of pH, temperature and water activity on the inhibition of Botrytis cinerea by Bacillus amyloliquefaciens isolates. Afr J Biotechnol 11(9):2210–2217Google Scholar
  5. Al-Mughrabi KI, Berthélémé C, Livingston T, Burgoyne A, Poirier R, Vikram A (2008) Aerobic compost tea, compost and a combination of both reduce the severity of common scab (Streptomyces scabiei) on potato tubers. J Plant Sci 3:168–175CrossRefGoogle Scholar
  6. Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635CrossRefPubMedPubMedCentralGoogle Scholar
  7. Antonov A, Stewart A, Walter M, Callaghan MO (1997) Inhibition of conidium germination & mycelial growth of Botrytis cinerea by natural products. In: Proceedings of the fiftieth New Zealand plant protection conference. Lincoln University, Canterbury, pp 159–164Google Scholar
  8. Arras G, Piga A, Otmani ME (1995) Thymus capitatus essential oil reducing citrus fruit decay. In: Postharvest physiology, pathology & technologies for horticultural commodities: recent advances, Agadir, pp 426–428Google Scholar
  9. Askun T, Tumen G, Satil G, Kilic T (2008) Effects of some Lamiaceae species methanol extracts on potential mycotoxin producer fungi. Pharm Biol 46:688–694CrossRefGoogle Scholar
  10. Assunccedil MR, Santiago RR, Langassner SMZ, Svidzinski TIE, Soares LAL (2013) Antifungal activity of medicinal plants from Northeastern Brazil. J Med Plants Res 7(40):3008–3013CrossRefGoogle Scholar
  11. Attyia SH, Youssry AA (2001) Application of Saccharomyces cerevisiae as a biocontrol agent against some diseases of Solanaceae caused by Macrophomina phaseolina and Fusarium solani. Egypt J Biol 3:79–87Google Scholar
  12. Barbosa TM, Serra CR, La Ragione RM, Woodward MJ, Adriano O, Henriques AO (2005) Screening for Bacillus isolates in the broiler gastro intestinal tract. Appl Envion Microbiol 71:968–978CrossRefGoogle Scholar
  13. Barik TK, Sahu B, Swain V (2008) Nanosilica–from medicine to pest control. Parasitol Res 103(2):253–258CrossRefGoogle Scholar
  14. Beever RE, Parkes SL (2004) Taxonomic and genetic variation of Botrytis and Botryotinia. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 29–52Google Scholar
  15. Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nano–particles–a recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493Google Scholar
  16. Bhattacharyya A, Datta PS, Chaudhuri P, Barik BR (2011) Nanotechnology: a new frontier for food security in socio economic development. In: Proceeding of disaster, risk and vulnerability conference 2011 held at School of Environmental Sciences, Mahatma Gandhi University, India in association with the Applied Geoinformatics for Society and Environment, Germany, 12–14 March 2011Google Scholar
  17. Borrero C, Trillas MI, Ordovas J, Tello JC, Aviles M (2004) Predictive factors for the suppression of fusarium wilt of tomato in plant growth media. Phytopathology 94:1094–1101CrossRefGoogle Scholar
  18. Bouchra C, Achouri M, Hassani LMI, Hmamouchi M (2003) Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea. J Ethnopharmacol 89:165–169CrossRefGoogle Scholar
  19. Boyraz N, Özcan M (2005) Antifungal effect of some spice hydrosols. Fitoterapia 76:661–665CrossRefGoogle Scholar
  20. Buck JW (2004) Combinations of fungicides with phylloplane yeasts for improved control of Botrytis cinerea on geranium seedlings. Phytopathology 94:196–202CrossRefGoogle Scholar
  21. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods–a review. Int J Food Microbiol 94:223–253CrossRefGoogle Scholar
  22. Caccioni DRL, Gardini F, Lanciotti R, Guerzoni ME (1997) Antifungal activity of natural volatile compounds in relation to their vapour pressure. Sci Aliment 17:21–34Google Scholar
  23. Calvo J, Calvente V, Orellano ME, Benuzzi D, Tosetti MIS (2007) Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Int J Food Microbiol 113:251–257CrossRefGoogle Scholar
  24. Campbell R (1989) Biological control of plant pathogens. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. Campos-Requenaa VH, Rivasa BL, Péreza MA, Figueroaa CR, Figueroab NE, Sanfuentes EA (2017) Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries in vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biol Technol 129:29–36CrossRefGoogle Scholar
  26. Card S, Jaspers M, Walter M, Sztejnberg A, Stewart A (2003) Biological control of Botrytis cinerea on strawberry. In: Botrytis workshop, 8th international congress of plant pathology, Christchurch, New Zealand. abstract, p 42Google Scholar
  27. Card S, Jaspers M, Walter M, Sztejnberg A, Stewart A (2004) Biological control of Botrytis cinerea in strawberry by the antagonistic fungus, Trichoderma atroviride (LU132). In: Thirteenth international botrytis symposium, Antalya. abstract, p 64Google Scholar
  28. Castoria R, De Curtis F, Lima G, Caputo L, Pacifico S, De Cicco V (2001) Aureobasidium pullulans (LS–30) an antagonist of postharvest pathogens of fruits: study on its modes of action. Postharvest Biol Technol 22:7–17CrossRefGoogle Scholar
  29. Chanchaichaovivat A, Ruenwongsa P, Panijpan B (2007) Screening and identification of yeast strains from fruits and vegetables: potential for biological control of postharvest chilli anthracnose (Colletotrichum capsici). Biol Control 42:326–335CrossRefGoogle Scholar
  30. Choudhury SR, Nair KK, Kumar R, Gogoi R, Srivastava C, Gopal M, Subramanium BS, Devakumar C, Goswami A (2010) Nanosulfur: potent fungicide against food pathogen, Aspergillus niger. Inst Phys Conf Proc 1276:154Google Scholar
  31. Chu CL, Liu WT, Zhou T, Tsao R (1999) Control of post–harvest grey mold rot of modified atmosphere packaged sweet cherries by fumigation with thymol and acetic acid. Can J Plant Sci 79:686–689Google Scholar
  32. Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin PG, Tantillo G, Ghibelli L, D’Alessio M, Blev-Zacheo T, Traversa E (2004) Antifungal activity of polymer–based copper nano–composite coatings. Appl Phys Lett 85:2417–2419CrossRefGoogle Scholar
  33. Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinase. Plant J 3:1–40CrossRefGoogle Scholar
  34. Copping LG, Menn JJ (2000) Biopesticides: a review of their action, application and efficacy. Pest Manag Sci 56:651–676CrossRefGoogle Scholar
  35. Corbo MR, Lanciotti R, Gardini F et al (2000) Effects of hexanal, trans–2–hexenal, and storage temperature on shelf life of fresh sliced apples. J Agric Food Chem 48:2401–2408CrossRefGoogle Scholar
  36. Cotxarrera L, Trillas MI, Steinberg C, Alabouvette C (2002) Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol Biochem 34:467–476CrossRefGoogle Scholar
  37. Davidson PM, Naidu AS (2000) Phyto–phenols. In: Naidu AS (ed) Natural food antimicrobial system. CRC Press, Boca Raton, pp 265–294Google Scholar
  38. de Lorena Ramos-García M, Bautista-Baños S, Barrera-Necha LL, Bosquez-Molina E, Alia-Tejacal I, Estrada-Carrillo M (2010) Antimicrobial compounds added in edible coatings for use in horticultural products. Mex J Phytopathol 28:44–57Google Scholar
  39. de Senna A, Lathrop A (2017) Antifungal screening of bioprotective isolates against Botrytis cinerea, Fusarium pallidoroseum and Fusarium moniliforme. Fermentation 3:53CrossRefGoogle Scholar
  40. Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430CrossRefPubMedPubMedCentralGoogle Scholar
  41. Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D et al (1994) A central role of salicylic acid in plant–disease resistance. Science 266:1247–1250CrossRefPubMedPubMedCentralGoogle Scholar
  42. Derbalah AS, Elkot GA, Hamza AM (2012) Laboratory evaluation of botanical extracts, microbial culture filtrates and silver nanoparticles against Botrytis cinerea. Ann Microbiol 62:1331–1337CrossRefGoogle Scholar
  43. Dhall RK (2013) Advances in edible coatings for fresh fruits and vegetables: a review. Crit Rev Food Sci Nutr 53:435–450CrossRefGoogle Scholar
  44. Dinh SQ, Joyce DC, Irving DE, Wearing AH (2008) Effects of multiple applications of chemical elicitors on Botrytis cinerea infecting Geraldton waxflower. Australas Plant Pathol 37:87–94CrossRefGoogle Scholar
  45. Dixit SN, Chandra H, Tiwari R, Dixit V (1995) Development of botanical fungicide against blue mold of mandarins. J Stored Prod Res 31:165–172CrossRefGoogle Scholar
  46. Droby S, Wisniewski ME, Macarisin D, Wilson C (2009) Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol Technol 52:137–145CrossRefGoogle Scholar
  47. Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209CrossRefGoogle Scholar
  48. Edwards SG, McKay T, Seddon B (1994) Interaction of Bacillus species with phytopathogenic fungi – methods of analysis & manipulation for biocontrol purposes. In: Blakeman J, Williamson B (eds) Ecology of plant pathogens. BiddIes Ltd, Guildford, pp 101–118Google Scholar
  49. Elad Y, Stewart A (2004) Microbial control of Botrytis spp. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 223–241Google Scholar
  50. Elad Y, Barbul O, Nitzani Y, David DR, Zveibil A, Maimon M, Freeman S (2001) Inter– & Intra– species variation in biocontrol activity. In: Proceedings of the 5th congress of the European Foundation for Plant Pathology, Taorminai/Giardini-Naxos, Sicily, pp 474–478Google Scholar
  51. Elad Y, Williamson B, Tudzynski P, Delen N (2004) Botrytis spp. and diseases they cause in agricultural systems – an introduction. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, DordrechtGoogle Scholar
  52. Elchiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV–1. J Nanobiotechnol 3:6.  https://doi.org/10.1186/1477–3155–3–6CrossRefGoogle Scholar
  53. El-Tarabily KA, Sivasithamparam K (2006) Potential of yeasts as biocontrol agents of soil–borne fungal plant pathogens and as plant growth promoters. Mycoscience 47:25–35CrossRefGoogle Scholar
  54. Esteban-Tejeda L, Malpartida F, Pecharroman C, Moya JS (2010) High antibacterial and antifungal activity of silver monodispersed nanoparticles embedded in a glassy matrix. Adv Eng Mater 12(7):B292–B297CrossRefGoogle Scholar
  55. Fagundes C, Pérez-Gago MB, Monteiro AR, Palou L (2013) Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose–lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit. Int J Food Microbiol 166:391–398CrossRefPubMedPubMedCentralGoogle Scholar
  56. Fallik E, Grinberg S, Ziu O (1997) Potassium bicarbonate reduces postharvest decay development on bell pepper fruit. J Hortic Sci 72:35–41CrossRefGoogle Scholar
  57. Fernandez Acero FJ, Carbú M, El-Akhal MR, Garrido C, González-Rodríguez VE, Cantoral JM (2011) Development of proteomics-based fungicides: new strategies for environmentally friendly control of fungal plant diseases. Int J Mol Sci 12:795–816CrossRefGoogle Scholar
  58. Fernández E, Segarra G, Trillas M (2014) Physiological effects of the induction of resistance by compost or Trichoderma asperellum strain T34 against Botrytis cinerea in tomato. Biol Control 78:77–85CrossRefGoogle Scholar
  59. Fernández-Ortuño D, Chen F, Schnabel G (2013) Resistance to cyprodinil and lack of fludioxonil resistance in Botrytis cinerea isolates from strawberry in North and South Carolina. Plant Dis 97:81–85CrossRefPubMedPubMedCentralGoogle Scholar
  60. Fernandez-Ortuño D, Antonio Tores J, Chamorro M, Perez-Garcia A, de Vicente A (2016) Characterization of resistance to six chemical classes of site-specific fungicides registered for gray mold control on strawberry in Spain. Plant Dis 100:2234–2239CrossRefGoogle Scholar
  61. Fokkema NJ (1993) Opportunities & problems of control of foliar pathogens with microorganisms. Pestic Sci 57:411–416CrossRefGoogle Scholar
  62. Gakuubi MM, Maina AW, Wagacha JM (2017) Antifungal activity of essential oil of Eucalyptus camaldulensis Dehnh. against selected Fusarium spp. Int J Microbiol 2017:8761610CrossRefPubMedPubMedCentralGoogle Scholar
  63. Gangemi S, Miozzi E, Teodoro M, Briguglio G, De Luca A, Alibrando C, Polito I, Libra M (2016) Occupational exposure to pesticides as a possible risk factor for the development of chronic diseases in humans. Mol Med Rep 14:4475–4488CrossRefPubMedPubMedCentralGoogle Scholar
  64. Gao P, Qin J, Li D, Zhou S (2018) Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea. PLoS One 13(1):e0190932CrossRefPubMedPubMedCentralGoogle Scholar
  65. Girard IJ, Mcloughlin AG, de Kievit TR, Fernando DW, Belmonte MF (2016) Integrating large-scale data and RNA technology to protect crops from fungal pathogens. Front Plant Sci 7:631.  https://doi.org/10.3389/fpls.2016.00631CrossRefPubMedPubMedCentralGoogle Scholar
  66. Giraud T, Fortini DCCL, Leroux P, Brygoo Y (1997) RFLP markers show genetic re–combination in Botryotinia fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species. Mol Biol Evol 14:1177–1185CrossRefGoogle Scholar
  67. Gopal M, Chaudhary SR, Roy I, Pradhan S, Srivastava C, Gogoi R, Kumar R, Goswami A (2011) Indian Patent Appl No. 2051/DEL/2011 filed 21/07/2011Google Scholar
  68. Guinebretiere MH, Nguyen-The C, Morrison M, Reich M, Nicot P (2000) Isolation & characterization of antagonists for the biocontrol of the postharvest wound pathogen Botrytis cinerea on strawberry fruits. J Food Prot 63:386–394CrossRefGoogle Scholar
  69. Hao Y, Cao X, Ma C, Zhang Z, Zhao N, Ali A, Hou T, Xiang Z, Zhuang J, Wu S, Xing B (2017) Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Front Plant Sci 8:1332.  https://doi.org/10.3389/fpls.2017.01332CrossRefPubMedPubMedCentralGoogle Scholar
  70. Hoitink HAJ, Stone AG, Han DY (1997) Suppression of plant diseases by composts. HortScience 32:184–187CrossRefGoogle Scholar
  71. Horst LE, Locke J, Krause CR, McMahon RW, Madden LV, Hoitink HAJ (2005) Suppression of Botrytis blight of Begonia by Trichoderma hamatum 382 in peat and compost–amended potting mixes. Plant Dis 89:1195–1200CrossRefPubMedPubMedCentralGoogle Scholar
  72. Hua L, Yong C, Zhanquan Z, Boqiang L, Guozheng Q, Shiping T (2018) Pathogenic mechanisms and control strategies of Botrytis cinerea causing postharvest decay in fruits and vegetables. Food Qual Safety 2(3):111–119CrossRefGoogle Scholar
  73. Hwang ET, Lee JH, Chae Y, Kim YS, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress–specific bioluminescent bacteria. Small 4:746–750CrossRefPubMedPubMedCentralGoogle Scholar
  74. Janisiewicz WJ (2009) Quo vadis of biological control of postharvest diseases. In: Prusky D, Gullino ML (eds) Post–harvest pathology plant pathology in the 21st century, vol 2. Springer, Dordrecht, pp 137–148CrossRefGoogle Scholar
  75. Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40:411–441CrossRefPubMedPubMedCentralGoogle Scholar
  76. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043CrossRefGoogle Scholar
  77. Joseph T, Morrison M (2006) Nanotechnology in agriculture and food: a nanoforum report. www.nanoforum.org. Accessed 19 Nov 2011
  78. Karaoglanidis G, Luo Y, Michailides T (2011) Competitive ability and fitness of Alternaria alternata isolates resistant to Qi fungicides. Plant Dis 95(2):178–182CrossRefGoogle Scholar
  79. Keurulainen L, Salin OA, Siiskonen J (2010) Design and synthesis of 2-arylbenzimidazoles and evaluation of their inhibitory effect against Chlamydia pneumoniae. Med Chem 53:7664CrossRefGoogle Scholar
  80. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  81. Kim S, Kim K, Lamsal K, Kim Y, Kim S, Jung M, Sim S, Kim H, Chang S, Kim J, Lee Y (2009) An in vitro study of the antifungal effect of silver nanoparticles on OakWilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764PubMedGoogle Scholar
  82. Kim JO, Shin JH, Gumilang A, Chung K, Choi KY, Kim KS (2016) Effectiveness of different classes of fungicides on Botrytis cinerea causing gray mold on fruit and vegetables. Plant Pathol J 32(6):570CrossRefPubMedPubMedCentralGoogle Scholar
  83. Kinay P, Yildiz M (2008) The shelf life and effectiveness of granular formulations of Metschnikowia pulcherrima and Pichia guilliermondii yeast isolates that control postharvest decay of citrus fruit. Biol Control 45:433–440CrossRefGoogle Scholar
  84. Knop K, Richard H, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49:6288CrossRefGoogle Scholar
  85. Kolaei EA, Cenatus C, Tweddell RJ, Avis TJ (2013) Antifungal activity of aluminium–containing salts against the development of carrot cavity spot and potato dry rot. Ann Appl Biol 163:311–317CrossRefGoogle Scholar
  86. Koné SB, Dionne A, Tweddell RJ, Antoun H, Avis TJ (2010) Suppressive effect of non–aerated compost teas on foliar fungal pathogens of tomato. Biol Control 52:167–173CrossRefGoogle Scholar
  87. Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta 93:95–99CrossRefGoogle Scholar
  88. Kubicek CP, Starr TL, Glass NL (2014) Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu Rev Phytopathol 52:427–451CrossRefGoogle Scholar
  89. Kumar R, Nair KK, Alam MI, Gogoi R, Singh PK, Srivastava C, Yadav S, Gopal M, Chaudhary SR, Pradhan S, Goswami A (2011) A simple method for estimation of sulphur in nanoformulations by UV spectrometry. Curr Sci 100:1542–1546Google Scholar
  90. Kupferman EA (1998) Postharvest chemicals applied to pears: a survey of pear packers in Washington Oregon and California. Tree Fruit Postharvest J 9:3–24Google Scholar
  91. Lanthier M (2007) Compost tea and its impact on plant diseases. BC Org Grower 10:7–11Google Scholar
  92. Latorre BA, Spadaro I, Rioja ME (2002) Occurrence of resistant strains of Botrytis cinerea to anilinopyrimidine fungicides in table grapes in Chile. Crop Prot 21:957–961CrossRefGoogle Scholar
  93. Legard DE, Mertely JC, Xiao CL, Chandler CK, Duval JR, Price JP (2000) Cultural and chemical control of Botrytis fruit rot of strawberry in annual winter production systems. Acta Hortic 567:651–654Google Scholar
  94. Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, Epton HAS, Harbour A (1995) Antibiotic production & biocontrol activity by Bacillus subtilis CL27 & Bacillus pumilus CL45. J Appl Bacteriol 78:97–108CrossRefGoogle Scholar
  95. Leroux P (2004) Chemical control of Botrytis and its resistance to chemical fungicides. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 195–222Google Scholar
  96. Leroux P, Fritz R, Debieu D, Albertini C, Lanen C, Bach J, Gredt M, Chapeland F (2002) Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manag Sci 58(9):876–888CrossRefGoogle Scholar
  97. Li ZZ, Chen JF, Liu F, Liu AQ, Wang Q, Sun HY, Wen LX (2007) Study of UV–shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63:241–246CrossRefGoogle Scholar
  98. Li R, Zhang H, Liu W, Zheng Z (2011) Biocontrol of postharvest gray and blue mold decay of apples with Rhodotorula mucilaginosa and possible mechanisms of action. Int J Food Microbiol 146:151–156CrossRefGoogle Scholar
  99. Li B, Wang W, Zong Y, Qin G, Tian S (2012) Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis. J Proteome Res 11:4249–4260CrossRefGoogle Scholar
  100. Lima G, Ippolito A, Nigro F, Salerno M (1997) Effectiveness of Aureobasidium pullulans and Candida oleophila against postharvest strawberry rots. Postharvest Biol Technol 10:169–178CrossRefGoogle Scholar
  101. Lima G, Arru S, De Curtis F, Arras G (1999) Influence of antagonist, host fruit and pathogen on the biological control of postharvest fungal diseases by yeasts. J Ind Microbiol Biotechnol 23:223–229CrossRefGoogle Scholar
  102. Lin CA (2007) Size matters: regulating nanotechnology. Harv Environ Law Rev 31:350–407Google Scholar
  103. Line M, Ramona Y (2003) The making of compost teas e the next generation? (Australia). Biocycle 44:55Google Scholar
  104. Litterick AM, Harrier L, Wallace P, Watson CA, Wood M (2004) The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production e a review. Crit Rev Plant Sci 23:453–379CrossRefGoogle Scholar
  105. Liu HM, Guo JH, Luo L, Liu P, Wang BQ, Cheng YJ, Deng BX, Long CA (2010a) Improvement of Hanseniaspora uvarum biocontrol activity against gray mold by the addition of ammonium molybdate and the possible mechanisms involved. Crop Prot 29:277–282CrossRefGoogle Scholar
  106. Liu HM, Guo JH, Cheng YJ, Luo L, Liu P, Wang BQ, Deng BX, Long CA (2010b) Control of gray mold of grape by Hanseniaspora uvarum and its effects on postharvest quality parameters. Ann Microbiol 60:31–35CrossRefGoogle Scholar
  107. Liu P, Luo L, Long CA (2013) Characterization of competition for nutrients in the biocontrol of Penicillium italicum by Kloeckera apiculata. Biol Control 67:157–162CrossRefGoogle Scholar
  108. Lucera A, Costa C, Conte A, Del Nobile MA (2012) Food applications of natural antimicrobial compounds. Front Microbiol 3:287CrossRefPubMedPubMedCentralGoogle Scholar
  109. Malarkodi C, Rajeshkumar S, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G (2014) Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens. Bioinorg Chem Appl 2014:1–10CrossRefGoogle Scholar
  110. Manso T, Nunes C (2011) Metschnikowia andauensis as new biocontrol agent of fruit postharvest diseases. Postharvest Biol Technol 61:67–71CrossRefGoogle Scholar
  111. Martinez F, Blancard D, Lecomte P, Levis C, Dubos B, Fermaud M (2003) Phenotypic differences between vacuma and transposa subpopulations of Botrytis cinerea. Eur J Plant Pathol 109:479–488CrossRefGoogle Scholar
  112. Matsson M, Hederstedt L (2001) The carboxin–binding site on Paracoccus denitrificans succinate: quinone reductase identified by mutations. J Bioenerg Biomembr 33:99–105CrossRefPubMedPubMedCentralGoogle Scholar
  113. Mbili NC, Opara UL, Lennox CL, Vries FA (2017) Citrus and lemongrass essential oils inhibit Botrytis cinerea on ‘Golden Delicious’,‘Pink Lady’and ‘Granny Smith’ apples. J Plant Dis Prot 124(5):499–511CrossRefGoogle Scholar
  114. Meyer DG, Bigirimana J, Elad Y, Hofte M (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279–286CrossRefGoogle Scholar
  115. Mobinikhaledi A, Foroughifar N, Kalhor M, Mirabolfathy M (2010) Synthesis and antifungal activity of novel 2-benzimidazolylimino-5-arylidene-4-thiazolidinones. J Heterocyclic Chem 47:77–80Google Scholar
  116. Mohamed MA, Abd-Elsalam KA (2018) Nanoantimicrobials for plant pathogens control: potential applications and mechanistic aspects. In: Nanobiotechnology applications in plant protection. Springer, Cham, pp 87–109Google Scholar
  117. Mohammadi M, Kazemi H (2002) Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Am J Plant Sci 162:491–498CrossRefGoogle Scholar
  118. Mohammadi A, Hashemi M, Hosseini SM (2015) Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal growth for controlling Botrytis cinerea, the causal agent of gray mould disease. Food Sci Emerg Technol 14:78–84Google Scholar
  119. Moline H, Hubbard JE, Karns JS, Buyer JS, Cohen JD (1999) Selective isolation of bacterial antagonists of Botrytis cinerea. Eur J Plant Pathol 105:95–101CrossRefGoogle Scholar
  120. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. NanoBiotechnology 16:2346–2353CrossRefGoogle Scholar
  121. Moussa SH, Tayel AA, Alsohim AS, Abdallah RR (2013) Botryticidal growth of nanosized silver–chitosan composite and its application for the control of gray mold in strawberry. J Food Sci 78:1589–1594CrossRefGoogle Scholar
  122. Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU–09. Bioresour Technol 101:8772–8776CrossRefGoogle Scholar
  123. Nallya MC, Pescea VM, Maturanoa YP, Muñoze CJ, Combinab M, Toroa ME, Castellanos de Figueroa LI, Vazqueza F (2012) Biocontrol of Botrytis cinerea in table grapes by non–pathogenic indigenous Saccharomyces cerevisiae yeasts isolated from viticultural environments in Argentina. Postharvest Biol Technol 64:40–48CrossRefGoogle Scholar
  124. Nigro F, Schena L, Ligorio A, Pentimone I, Ippolito A, Salerno MG (2006) Control of table grape storage rots by pre–harvest applications of salts. Postharvest Biol Technol 42:142–149CrossRefGoogle Scholar
  125. Noble R, Coventry E (2005) Suppression of soil–borne plant diseases with composts: a review. Biocontrol Sci Tech 15:3–20CrossRefGoogle Scholar
  126. Oh SD, Lee S, Choi SH, Lee IS, Lee YM, Chun JH, Park HJ (2006) Synthesis of Ag and Ag–SiO2 nanoparticles by у–irradiation and their antibacterial and antifungal efficiency against Salmonella enteric serovar Typhimurium and Botrytis cinerea. Colloids Surf A Physicochem Eng Asp 275:228–233CrossRefGoogle Scholar
  127. On A, Wong F, Ko Q, Tweddell RJ, Antoun H, Avis TJ (2015) Antifungal effects of compost tea microorganisms on tomato pathogens. Biol Control 80:63–69CrossRefGoogle Scholar
  128. Palmer CL, Horst RK, Langhans RW (1997) Use of bicarbonates to inhibit in vitro colony growth of Botrytis cinerea. Plant Dis 81:1432–1438CrossRefGoogle Scholar
  129. Pane C, Celano G, Villecco D, Zaccardelli M (2012) Control of Botrytis cinerea, Alternaria alternata and Pyrenochaeta lycopersici on tomato with whey compost–tea applications. Crop Prot 38:80–86CrossRefGoogle Scholar
  130. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica silver for control of various plant diseases. Plant Pathol J 22:295–302CrossRefGoogle Scholar
  131. Patrice RE, Le Floch G, Benhamou N, Salerno MI, Thuillier E, Tirilly Y (2005) Interactions between the mycoparasite Pythium oligandrum and two types of sclerotia of plant-pathogenic fungi. Mycol Res 109(7):779–788CrossRefGoogle Scholar
  132. Percival SL, Bowler PG, Russell D (2005) Bacterial resistance to silver in wound care. J Hosp Infect 60:1–7CrossRefPubMedPubMedCentralGoogle Scholar
  133. Pfender WF (1996) Microbial interactions preventing fungal growth on senescent & necrotic aerial plant surfaces. In: Aerial plant surface microbiology. Plenum Press, New York, pp 125–138CrossRefGoogle Scholar
  134. Plotto A, Roberts RG, Roberts DD (2003) Evaluation of plant essential oils as natural postharvest disease control of tomato (Lycopersicum esculentum). Acta Hortic 628:737–745CrossRefGoogle Scholar
  135. Ponce AG, Roura SI, del Valle CE, Moreira MR (2008) Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: in vitro and in vivo studies. Postharvest Biol Technol 49:294–300CrossRefGoogle Scholar
  136. Puškárová A, Bučková M, Kraková L, Pangallo D, Kozics K (2017) The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci Rep 7(1):8211CrossRefPubMedPubMedCentralGoogle Scholar
  137. Qin X, Xiao H, Xue C, Yu Z, Yang R, Cai Z, Si L (2015) Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate. Postharvest Biol Technol 100:160–167CrossRefGoogle Scholar
  138. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293CrossRefPubMedPubMedCentralGoogle Scholar
  139. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83CrossRefPubMedPubMedCentralGoogle Scholar
  140. Reichlinga J, Schnitzlerb P, Suschkea U, Sallerc R (2009) Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties – an overview. Forsch Komplementmed 16:9–90Google Scholar
  141. Robledo N, Vera P, López L, Yazdani-Pedram M, Tapia C, Abugoch L (2018) Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes. Food Chem 246:211–219CrossRefGoogle Scholar
  142. Rodríguez-González V, Domínguez-Espíndola RB, Casas-Flores S, Patrón-Soberano OA, Camposeco-Solis R, Lee SW (2016) Antifungal nanocomposites inspired by titanate nanotubes for complete inactivation of Botrytis cinerea isolated from tomato infection. ACS Appl Mater Interfaces 8:31625–31637CrossRefGoogle Scholar
  143. Rosslenbroich HJ, Stuebler D (2000) Botrytis cinerea—history of chemical control and novel fungicides for its management. Crop Prot 19:557–561CrossRefGoogle Scholar
  144. Sales MD, Costa HB, Fernandes PM, Ventura JA, Meira DD (2016) Antifungal activity of plant extracts with potential to control plant pathogens in pineapple. Asian Pac J Trop Biomed 6(1):26–31CrossRefGoogle Scholar
  145. Sánchez-Gonzáles L, Vargas M, González-Martínez C, Chiralt A, Cháfer M (2011) Use of essential oils in bioactive edible coatings. Food Eng Rev 3:1–16CrossRefGoogle Scholar
  146. Schena L, Ippolito A, Zahavi T, Cohen L, Nigro F, Droby S (1999) Genetic diversity and biocontrol activity of Aureobasidium pullulans isolates against postharvest rots. Postharvest Biol Technol 17:189–199CrossRefGoogle Scholar
  147. Scheuerell SJ, Mahaffee WF (2002) Compost tea: principles and prospects for plant disease control. Compost Sci Util 10:313–338CrossRefGoogle Scholar
  148. Schnabel G, Amiri A, Brannen PM (2012) Field kit– and internet–supported fungicide resistance monitoring. In: Thind TS (ed) Fungicide resistance in crop protection: risk and management. CABI, Oxfordshire, pp 116–132CrossRefGoogle Scholar
  149. Schumacher J (2017) How light affects the life of Botrytis. Fungal Genet Biol 106:26–41CrossRefGoogle Scholar
  150. Scrinis G, Lyons K (2007) The emerging nano–corporate paradigm nanotechnology and the transformation of nature, food and agrifood systems. Int J Sociol Agric Food 15(2):22–44Google Scholar
  151. Segarra G, Casanova E, Borrero C, Avilés M, Trillas MI (2007) The suppressive effects of composts used as growth media against Botrytis cinerea in cucumber plants. Eur J Plant Pathol 117:393–402CrossRefGoogle Scholar
  152. Sellamuthu PS, Sivakumar D, Soundy P, Korsten L (2013) Enhancing the defence related and antioxidant enzymes activities in avocado cultivars with essential oil vapours. Postharvest Biol Technol 81:66–72CrossRefGoogle Scholar
  153. Sergeeva V, Nair NG, Verdana JR, Shen C, Barchia I, Spooner-Hart R (2002) First report of anilinopyrimidine resistant phenotypes in Botrytis cinerea on grapevines in Australia. Australas Plant Pathol 31:299–300CrossRefGoogle Scholar
  154. Shao W, Zhang Y, Wang J, Lv C, Chen C (2016) BcMtg2 is required for multiple stress tolerance, vegetative development and virulence in Botrytis cinerea. Sci Rep 6:28673CrossRefPubMedPubMedCentralGoogle Scholar
  155. Sivropoulou A, Papanikolaou E, Nikolaou C, Kokkini S, Lanaras T, Arsenakis M (1996) Antimicrobial and cytotoxic activities of Origanum essential oils. J Agric Food Chem 44(5):1202–1205CrossRefGoogle Scholar
  156. Sondi I, Sondi BS (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram–negative bacteria. J Colloid Interface Sci 275:177–182CrossRefPubMedPubMedCentralGoogle Scholar
  157. Soylu EM, Kurt S, Soylu S (2010) In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int J Food Microbiol 143(3):183–189CrossRefGoogle Scholar
  158. Spadaro D, Gullino ML (2005) State of the art and future prospects of biological control of postharvest fruit diseases. Int J Food Microbiol 91:185–194CrossRefGoogle Scholar
  159. Spotts RA, Sanderson PG, Lennox CL, Sugar D, Cervantes LA (1998) Wounding, wound healing and staining of mature pear fruit. Postharvest Biol Technol 13:27–36CrossRefGoogle Scholar
  160. Stević T, Berić T, Šavikin K, Soković M, Gođevac D, Dimkić I, Stanković S (2014) Antifungal activity of selected essential oils against fungi isolated from medicinal plant. Ind Crop Prod 55:116–122CrossRefGoogle Scholar
  161. Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194CrossRefPubMedPubMedCentralGoogle Scholar
  162. Suhartono D (2015) Preparation of chitosan material and its antifungal activity for bamboo. Int J Sci Res 6:1586–1590Google Scholar
  163. Suppakul P, Miltz J, Sonneveld K, Bigger SW (2003) Antimicrobial properties of basil and its possible application in food packaging. J Agric Food Chem 51:3197–3207CrossRefPubMedPubMedCentralGoogle Scholar
  164. Sutton JC, Peng G (1993) Manipulation & vectoring of biocontrol organisms to manage foliage & fruit diseases in cropping systems. Annu Rev Phytopathol 31:473–493CrossRefGoogle Scholar
  165. Svahn KS, Göransson U, El-Seedi H, Bohlin L, Larsson DJ, Olsen B, Chryssanthou E (2012) Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment. Infect Ecol Epidemiol 2(1):11591Google Scholar
  166. Swadling IR, Jeffries P (1998) Antagonistic properties of two bacterial biocontrol agents of grey mould disease. Biocontrol Sci Tech 8:439–448CrossRefGoogle Scholar
  167. Sztanke K, Tuzimski T, Rzymowska J, Pasternak K, Kandefer-Szerszeń M (2008) Synthesis, determination of the lipophilicity, anticancer and antimicrobial properties of some fused 1, 2, 4-triazole derivatives. Eur J Med Chem 43(2):404–419CrossRefGoogle Scholar
  168. Tadesse M, Steiner U, Hindorf H, Dehne HW (2003) Bryophyte extracts with activity against plant pathogenic fungi. Ethiop J Sci 26:55–62Google Scholar
  169. Toral L, Rodríguez M, Béjar V, Sampedro I (2018) Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea. Front Microbiol 9:1315.  https://doi.org/10.3389/fmicb.2018.01315CrossRefPubMedPubMedCentralGoogle Scholar
  170. Tzortzakis NG (2007a) Maintaining postharvest quality of fresh produce with volatile compounds. Innov Food Sci Emerg Technol 8:111–116CrossRefGoogle Scholar
  171. Tzortzakis NG (2007b) Methyl jasmonate–induced suppression of anthracnose rot in tomato fruit. Crop Prot 26:1507–1513CrossRefGoogle Scholar
  172. U.S. EPA (2011) Exposure factors handbook 2011 edition (final report). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R–09/052FGoogle Scholar
  173. Valencia-Chamorro SA, Palou L, del Río MA, Pérez-Gago MB (2011) Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review. Crit Rev Food Sci Nutr 51:872–900CrossRefGoogle Scholar
  174. Van Kan JA (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253CrossRefGoogle Scholar
  175. Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense–related proteins in infected plants. Annu Rev Phytopathol 44:135–162CrossRefGoogle Scholar
  176. Verhagen BWM, Glazebrook J, Zhu T, Chang HS, Van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria–induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 17:895–908CrossRefGoogle Scholar
  177. Wang Y, Yu T, Xia J, Yu D, Wang J, Zheng X (2010) Biocontrol of postharvest gray mold of cherry tomatoes with the marine yeast Rhodosporidium paludigenum. Biol Control 53:178–182CrossRefGoogle Scholar
  178. Wang XJ, Min CL, Yang Y (2015) Isolation of actinomycete DF02 from composting and its application in biological control of Botrytis cinerea. J Chin Med Mater 38(8):1566–1670Google Scholar
  179. Wang X, Glawe DA, Kramer E, Weller D, Okubara PA (2018) Biological control of Botrytis cinerea: interactions with native vineyard yeasts from Washington State. Phytopathology 108(6):691–701CrossRefGoogle Scholar
  180. Wilson CL, Wisniewski ME (1989) Biological control of postharvest diseases of fruits and vegetables: an emerging technology. Annu Rev Phytopathol 27:425–441CrossRefGoogle Scholar
  181. Wilson CL, Wisniewski ME (eds) (1994) Biological control of postharvest diseases: theory and practice. CRC Press, Boca RatonGoogle Scholar
  182. Wood RKS (1951) The control of diseases of lettuce by the use of antagonistic microorganisms. 1. The control of Botrytis cinerea Pers. Ann Appl Biol 38:203–216CrossRefGoogle Scholar
  183. Yildirim I, Yapici BM (2007) Inhibition of conidia germination and mycelial growth of Botrytis cinerea by some alternative chemicals. Pak J Biol Sci 10:1294–1300CrossRefGoogle Scholar
  184. Youssef K, Roberto SR (2014) Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of ‘Italia’ table grapes. Postharvest Biol Technol 87:95–102CrossRefGoogle Scholar
  185. Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA (2012) Efficacy of plant–mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopest 288(Suppl 5):95–102Google Scholar
  186. Zhang W, Han DY, Dick WA, Davis KR, Hoitink HAJ (1998) Compost and compost water extract–induced systemic acquired resistance in cucumber and Arabidopsis. Phytopathology 88:450–455CrossRefGoogle Scholar
  187. Zhang D, Spadaro D, Garibaldi A, Gullino ML (2010) Efficacy of the antagonist Aureobasidium pullulans PL5 against postharvest pathogens of peach, apple and plum and its modes of action. Biol Control 54:172–180CrossRefGoogle Scholar
  188. Zhou T, Schneider KE, Li X (2008) Development of biocontrol agents from food microbial isolates for controlling post– harvest peach brown rot caused by Monilinia fructicola. Int J Food Microbiol 126:180–185CrossRefGoogle Scholar
  189. Znini M, Cristofari G, Majidi L, Mazouz H, Tomi P, Paolini J et al (2011) Antifungal activity of essential oil from Asteriscus graveolens against postharvest phytopathogenic fungi in apples. Nat Prod Commun 6:1763–1768PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Esraa Gabal
    • 1
  • Amal-Asran
    • 2
    • 3
  • Mohamed A. Mohamed
    • 2
  • Kamel A. Abd-Elsalam
    • 2
    • 3
  1. 1.Agricultural Science and Resource Management in the Tropics and Subtropics, Faculty of Agriculture, Bonn UniversityBonnGermany
  2. 2.Plant Pathology Research Institute, Agricultural Research Center (ARC)GizaEgypt
  3. 3.Unit of Excellence in Nano-Molecular Plant Pathology Research Center – Plant Pathology Research InstituteGizaEgypt

Personalised recommendations