Advertisement

Zinc-Based Nanostructures in Plant Protection Applications

  • Manal Mostafa
  • Hassan Almoammar
  • Kamel A. Abd-Elsalam
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Green nanochemistry reduces pollution risk at source levels where the principal focus is on the choice of reagents that are safe for the environment. Zinc oxide nanoparticles (ZnO NPs) are considered to be a biosafe material for biological species, especially plants. ZnO NPs have the potential to increase the yield and growth of food crops. The use of ZnO NPs as a Zn fertilizer and also the positive and negative effects are discussed in detail. However, their outcome can be either positive or negative, depending on the size, shape, surface structure, physicochemical properties, the concentration of the nanoparticles, and the cell type and age. The possible antimicrobial mechanisms of ZnO nanomaterials include disruption of the cell wall and depletion in intracellular content as well as the disturbance in DNA replication and ROS generation in the microbial cell. This review emphasizes the main applications of zinc nanomaterials in plant promotion and protection.

Notes

Acknowledgments

This research was supported by the Science and Technology Development Fund (STDF), Joint Egypt (STDF)-South Africa (NRF) Scientific Cooperation, Grant ID. 27837 to Kamel Abd-Elsalam.

References

  1. Afrayeem SM, Chaurasia AK (2017) Effect of zinc oxide nanoparticles on seed germination and seed vigour in chilli (Capsicum annuum L.). J Pharmacol Phytochem 6(5):1564–1566Google Scholar
  2. Akir S, Hamdi A, Addad A, Coffinier Y, Boukherroub R, Omrani AD (2017) Facile synthesis of carbon-ZnO nanocomposite with enhanced visible light photocatalytic performance. Appl Surf Sci 400:461–470CrossRefGoogle Scholar
  3. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16CrossRefPubMedPubMedCentralGoogle Scholar
  4. Al-Dhabi NA, Arasu MV (2018) Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties. Nanomaterials (Basel) 8(7):500CrossRefGoogle Scholar
  5. Alharby HF, Metwali EMR, Fuller MP, Aldhebiani AY (2016) Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill.) under salt stress. Arch Biol Sci 68(4):723–735CrossRefGoogle Scholar
  6. Amooaghaie R, Norouzi M, Saeri M (2017) Impact of zinc and zinc oxide nanoparticles on the physiological and biochemical processes in tomato and wheat. Botany 95:441–455CrossRefGoogle Scholar
  7. Aponiene K, Rasiukeviciute J, Viskelis A, Valiuskaite P, Viskelis P, Uselis N, Luksiene Z (2015) First attempts to control microbial contamination of strawberries by ZnO nanoparticles. Greece. In: International nonthermal process work, AthensGoogle Scholar
  8. Arciniegas-Grijalba PA, Patiño-Portela MC, Mosquera-Sánchez LP, Guerrero-Vargas JA, Rodríguez-Páez JE (2017) ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nanosci 7:225–241CrossRefGoogle Scholar
  9. Athauda TJ, Hari P, Ozer RR (2013) Tuning physical and optical properties of ZnO nanowire arrays grown on cotton fibers. ACS Appl Mater Interfaces 5:6237–6246CrossRefPubMedPubMedCentralGoogle Scholar
  10. Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. In: Maret W (ed) Zinc biochemistry, physiology, and homeostasis. Springer, Dordrecht, pp 85–127. ISBN 978-90-481-5916-1CrossRefGoogle Scholar
  11. Awasthi A, Bansal S, Jangir LK, Awasthi G, Awasthi KK, Awasthi K (2017) Effect of ZnO nanoparticles on germination of Triticum aestivum seeds. Macromol Symp 8:1909.  https://doi.org/10.3389/fmicb.2017.01909CrossRefGoogle Scholar
  12. Bagheri H, Amanzadeh H, Yamini Y, Masoomi MY, Salar-Amoli AMJ, Hassan J (2018) A nanocomposite prepared from a zinc-based metal-organic framework and polyethersulfone as a novel coating for the headspace solid-phase microextraction of organophosphorous pesticides. Microchim Acta 185:62.  https://doi.org/10.1007/s00604-017-2607-3CrossRefGoogle Scholar
  13. Biswal SK, Nayak AK, Parida UK, Nayak PL (2012) Applications of nanotechnology in agriculture and food sciences. Int J Sci Innov Discov 2:21–36Google Scholar
  14. Barik TK, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103:253–258CrossRefGoogle Scholar
  15. Becheri A, Durr M, Lo Nostro P, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10:679–689CrossRefGoogle Scholar
  16. Boonyanitipong P, Kositsup B, Kumar P, Baruah S, Dutta J (2011) Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed. Int J Biosci Biochem Bioinform 1:282–285Google Scholar
  17. Borboa L, De la Torre C (1996) The genotoxicity of Zn (II) and Cd (II) in Allium cepa root meristematic cells. New Phytol 134:481–486CrossRefGoogle Scholar
  18. Brayner R, Ferrari-lliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6(4):866–870CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chai H, Yao J, Sun J, Zhang C, Liu W, Zhu M, Ceccanti B (2015) The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull Environ Contam Toxicol 94(4):490–505CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chiahi N, Bouloudenine M, Louhichi BR (2016) The effect of nanoparticles on development parameters in a plant species: durum wheat (Triticum durum Desf). Pharm Lett 8(6):154–159Google Scholar
  21. Coradeghini R, Gioria S, Garcia CP, Nativo P, Franchini F, Gilliland D, Ponti J, Rossi F (2013) Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217:205–216CrossRefPubMedPubMedCentralGoogle Scholar
  22. Collins D, Luxton T, Kumar N, Shah S, Walker VK, Shah V (2012) Assessing the Impact of Copper and Zinc Oxide Nanoparticles on Soil: A Field Study. PLoS ONE, 7(8): e42663. doi:10.1371/journal.pone.0042663Google Scholar
  23. David CA, Galceran J, Rey-Castro C, Puy J, Companys E, Salvador J, Monné J, Wallace R, Vakourov A (2012) Dissolution kinetics and solubility of zinc oxide nanoparticles followed by AGNES. J Phys Chem C 116:11758–11767.  https://doi.org/10.1021/jp301671bCrossRefGoogle Scholar
  24. De la Rosa G, Lopez-Moreno ML, Hernandez-Viezcas JA et al (2011) Toxicity and biotransformation of ZnO nanoparticles in the desert plants Prosopis juliflora-velutina, Salsola tragus and Parkinsonia florida. Int J Nanotechnol 8:492–506CrossRefGoogle Scholar
  25. De la Rosa G, Lopez-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85(12):2161–2174CrossRefGoogle Scholar
  26. De la Rosa-García SC, Martínez-Torres P, Gómez-Cornelio S, Corral-Aguado MA, Quintana P, Gómez-Ortíz NM (2018) Antifungal activity of ZnO and MgO nanomaterials and their mixtures against Colletotrichum gloeosporioides strains from tropical fruit. J Nanomater 2018:9, Article ID 3498527.  https://doi.org/10.1155/2018/3498527CrossRefGoogle Scholar
  27. Decelis S, Sardella D, Triganza T, Brincat J-P, Gatt R, Valdramidis VP (2017) Assessing the anti-fungal efficiency of filters coated with zinc oxide nanoparticles. R Soc Open Sci 4:161032.  https://doi.org/10.1098/rsos.161032CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dehaghi SM, Rahmanifar B, Moradi AM, Azar PA (2014) Removal of permethrin pesticide from water by chitosan–zinc oxide nanoparticles composite as an adsorbent. J Saudi Chem Soc 18(4):348–355CrossRefGoogle Scholar
  29. Devirgiliis C, Murgia C, Danscher G, Perozzi G (2004) Ex-changeable zinc ions transiently accumulate in a vesicular compartment in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 323(1):58–64CrossRefPubMedPubMedCentralGoogle Scholar
  30. Dimkpa CO, Zeng J, McLean JE, Britt DW, Zhan J, Anderson AJ (2011) Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl Environ Microbiol 78(5):1404–1410CrossRefPubMedPubMedCentralGoogle Scholar
  31. Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26(6):913–924CrossRefPubMedPubMedCentralGoogle Scholar
  32. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284CrossRefGoogle Scholar
  33. Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828CrossRefPubMedPubMedCentralGoogle Scholar
  34. Duan CQ, Wang HX (1995) Cytogenetical toxical effects of heavy metals on Vicia faba and inquires into the Vicia-micronucleus. Acta Bot Sin 37:14–24Google Scholar
  35. Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23CrossRefGoogle Scholar
  36. Duran N, Seabra AB (2012) Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms. Appl Microbiol Biotechnol 95:275–288CrossRefGoogle Scholar
  37. Esfahani MN (2006) Present status of Fusarium dry rot of potato tubers in Isfahan (Iran). Indian Phytopathol 59(2):142–147Google Scholar
  38. Espitia PPJ, Soares NDFF, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464CrossRefGoogle Scholar
  39. Estrada-Urbina J, Cruz-Alonso A, Santander-González M, Méndez-Albores A, Vázquez-Durán A (2018) Nanoscale zinc oxide particles for improving the physiological and sanitary quality of a Mexican landrace of red maize. Nanomaterials 8:247CrossRefGoogle Scholar
  40. Fadaei A, Kargar M (2013) Photocatalytic degradation of chlorpyrifos in water using titanium dioxide and zinc oxide. Fresen Environ Bull 22(8):2442–2447Google Scholar
  41. FDA (2016) Part 182—Substances generally recognized as safe. Accessed 01 Feb 2017. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.8991
  42. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490CrossRefPubMedPubMedCentralGoogle Scholar
  43. Fakruddin M, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnol 10(1):31. doi:10.1186/1477-3155-10-31Google Scholar
  44. Galbraith DW (2007) Nanobiotechnology: silica breaks through in plants. Nat Nanotechnol 2:272–272CrossRefPubMedPubMedCentralGoogle Scholar
  45. Gangloff WJ, Westfall DG, Peterson GA, Mortvedt JJ (2006) Mobility of organic and inorganic zinc fertilizers in soils. Commun Soil Sci Plant Anal 37:199–209CrossRefGoogle Scholar
  46. Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952–955CrossRefPubMedPubMedCentralGoogle Scholar
  47. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408CrossRefPubMedPubMedCentralGoogle Scholar
  48. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792CrossRefGoogle Scholar
  50. Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A, Mukherjee A (2016) Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res/Genet Toxicol Environ Mutagen 807:25–32Google Scholar
  51. Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257CrossRefGoogle Scholar
  52. Graham JH, Dewdney MM, Myers ME (2010) Streptomycin and copper formulations for control of citrus canker on grapefruit. Proc Fla State Hortic Soc 123:92–99Google Scholar
  53. Graham JH, Johnson EG, Myers ME, Young M, Rajasekaran P, Das S, Santra S (2016) Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. Plant Dis 100:2442–2447CrossRefPubMedPubMedCentralGoogle Scholar
  54. Han Y, Obendorf SK (2016) Reactivity and reusability of immobilized zinc oxide nanoparticles in fibers on methyl parathion decontamination. Text Res J 86:339–349CrossRefGoogle Scholar
  55. Hassan AA, Howayda M, El-Shafei A, Mahmoud HH (2013) Effect of zinc oxide nanoparticles on the growth of some mycotoxigenic moulds. J Stud Chem Process Technol (SCPT) ASSE 1:16–25Google Scholar
  56. He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215CrossRefPubMedPubMedCentralGoogle Scholar
  57. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316CrossRefPubMedPubMedCentralGoogle Scholar
  58. Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust J Crop Sci 8:612–624Google Scholar
  59. Hernández-Meléndez D, Salas-Téllez E, Zavala-Franco A, Téllez G, Méndez-Albores A, Vázquez-Durán A (2018) Inhibitory effect of flower-shaped zinc oxide nanostructures on the growth and aflatoxin production of a highly toxigenic strain of Aspergillus flavus link. Materials 11:1265.  https://doi.org/10.3390/ma11081265CrossRefPubMedCentralGoogle Scholar
  60. Hua J, Vijver MG, Richardson MK, Ahmad F, Peijnenburg WJGM (2014) Particle-specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio). Environ Toxicol Chem 33:2859–2868CrossRefPubMedPubMedCentralGoogle Scholar
  61. Ishwarya R, Vaseeharan B, Kalyani S, Banumathi B, Govindarajan M, Alharbi NS, Kadaikunnan S, Al-anbr MN, Khaled JM, Benelli G (2018) Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J Photochem Photobiol B Biol 178:249–258CrossRefGoogle Scholar
  62. Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KV (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry interactions and potential environmental implications. Sci Total Environ 400:396–414CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23(6):1116–1122CrossRefPubMedPubMedCentralGoogle Scholar
  65. Keller AA, Wang HT, Zhou DX, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji ZX (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967CrossRefPubMedPubMedCentralGoogle Scholar
  66. Khan SH, Suriyaprabha R, Pathak B, Fulekar MH (2015) Photocatalytic degradation of organophosphate pesticides (Chlorpyrifos) using synthesized zinc oxide nanoparticle by membrane filtration reactor under UV irradiation. Front Nanosci Nanotechnol 1(1):23–27.  https://doi.org/10.15761/FNN.1000105CrossRefGoogle Scholar
  67. Khooshe-bast Z, Sahebzadeh N, Mansour GM, Ali M (2016) Insecticidal effects of zinc oxide nanoparticles and Beauveria bassiana TS11 on Trialeurodes vaporariorum (Westwood, 1856) (Hemiptera: Aleyrodidae). Acta Agric Sloven 107(2):299–309CrossRefGoogle Scholar
  68. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  69. Kim SH, Lee SY, Lee IS (2012) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223:2799–2806CrossRefGoogle Scholar
  70. Kisan B, Shruthi H, Sharanagouda H, Revanappa SB, Pramod NK (2015) Effect of nano-zinc oxide on the leaf physical and nutritional quality of spinach. Agrotechnology 5:135Google Scholar
  71. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157CrossRefGoogle Scholar
  72. Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621CrossRefPubMedPubMedCentralGoogle Scholar
  73. Kuriakose S, Satpati B, Mohapatra S (2015) Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Phys Chem Chem Phys 17:25172–25181CrossRefPubMedPubMedCentralGoogle Scholar
  74. Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, Storchova H, White JC, Vanek T (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241:55–62CrossRefPubMedPubMedCentralGoogle Scholar
  75. Latef AA, Alhmad MF, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36:60–70CrossRefGoogle Scholar
  76. Laware SL, Raskar S (2014) Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. Int J Curr Microbiol Appl Sci 3(7):874–881Google Scholar
  77. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675CrossRefPubMedPubMedCentralGoogle Scholar
  78. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49CrossRefPubMedPubMedCentralGoogle Scholar
  79. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250.  https://doi.org/10.1016/j.envpol.2007.01.016CrossRefPubMedPubMedCentralGoogle Scholar
  80. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585.  https://doi.org/10.1021/es800422xCrossRefPubMedGoogle Scholar
  81. Lin WS, Xu Y, Huang CC, Ma YF, Shannon KB, Chen DR, Huang YW (2009) Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res 11:25–39CrossRefGoogle Scholar
  82. López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO(2) nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320Google Scholar
  83. Ma R, Levard C, Marinakos SM, Cheng YW, Liu J, Michel FM, Brown GE, Lowry GV (2012) Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46:752–759CrossRefPubMedPubMedCentralGoogle Scholar
  84. Mahajan P, Dhoke SK, Khanna AS, Tarafdar JC (2011) Effect of nano-ZnO on growth of mung bean (Vigna radiata) and chickpea (Cicer arietinum) seedlings using plant agar method. Appl Biol Res 13(2):54–61Google Scholar
  85. Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102:5566–5572CrossRefGoogle Scholar
  86. Mortvedt JJ (1992) Crop response to level of water-soluble zinc in granular zinc fertilizers. Fertil Res 33:249–255CrossRefGoogle Scholar
  87. Mostafa WA, Elgazzar E, Beall GW, Rashed SS, Rashad EM (2018) Insecticidal effect of zinc oxide and aluminum oxide nanoparticles synthesized by co-precipitation technique on Culex quinquefasciatus larvae (Diptera: Culicidae). Int J Appl Res 4(4):290–297Google Scholar
  88. Mukherjee A, Pokhrel S, Bandyopadhyay S, Madler L, Peralta-Videa JR, Gardea-Torresdey JL (2014) A soil mediated phyto-toxicological study of iron doped zinc oxide nanoparticles (Fe@ZnO) in green peas (Pisum sativum L.). J Chem Eng 258:394–401CrossRefGoogle Scholar
  89. Mukherjee A, Sun Y, Morelius E, Tamez C, Bandyopadhyay S, Niu G, White JC et al (2016) Differential toxicity of bare and hybrid ZnO nanoparticles in green pea (Pisum sativum L.): a life cycle study. Front Plant Sci 12(6):1242Google Scholar
  90. Muthumariappan S, Vedhi C (2017) Nonenzymatic sensing of methyl parathion based on RGO-Zno nanocomposite modified glassy carbon electrode. IOSR J Appl Chem 10:55–64CrossRefGoogle Scholar
  91. Nair S, Sasidharan A, Rani VVD, Menon D, Nair S, Manzoor K, Raina S (2009) Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med 20:235–241CrossRefGoogle Scholar
  92. Niranjani R, Anchana-Devi C (2017) Photocatalytic degradation of pesticide phorate using zinc oxide nanoparticles. Int J Acad Res Dev 2:35–40Google Scholar
  93. Ohira T, Yamamoto O, Iida Y, Nakagawa Z (2008) Antibacterial activity of ZnO powder with crystallographic orientation. J Materil Sci. Materials in Medicine 19(3):1407– 1412Google Scholar
  94. Panwar J, Jain N, Bhargaya A, Akhtar MS, Yun YS (2012) Positive effect of zinc oxide nanoparticles on tomato plants: a step towards developing “Nano-fertilizers.” In: Proceedings of 3rd international conference on environmental research and technology (ICERT), May 30–June 1, 2012, PenangGoogle Scholar
  95. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica–silver for control of various plant diseases. J Plant Pathol 22:25–34Google Scholar
  96. Park S, Lee JH, Kim HS, Park HJ, Lee JC (2009) Effect of ZnO nanopowder dispersion on photocatalytic reactions for the removal of Ag ions from aqueous solution. J Electroceram 22:105–109CrossRefGoogle Scholar
  97. Patra P, Mitra S, Debnath N, Goswami A (2012) Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide, an in vivo and in vitro toxicity study. Langmuir 28:16966–16978CrossRefPubMedPubMedCentralGoogle Scholar
  98. Perez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545CrossRefPubMedPubMedCentralGoogle Scholar
  99. Pramod M, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedling using plant agar method. J Nanotechnol.  https://doi.org/10.1155/2011/696535
  100. Prasad T, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927CrossRefGoogle Scholar
  101. Prakash MG, Chung IM (2016) Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum Aestivum l.) seedlings. Acta Biologica Hungarica 67(3): 286–296Google Scholar
  102. Priyanka N, Venkatachalam P (2016) Biofabricated zinc oxide nanoparticles coated with phycomolecules as novel micronutrient catalysts for stimulating plant growth of cotton. Adv Nat Sci Nanosci Nanotechnol 7(4):045018.  https://doi.org/10.1088/2043-6262/7/4/045018CrossRefGoogle Scholar
  103. Raigond P, Raigond B, Kaundal B, Singh B, Joshi A, Dutt S (2017) Effect of zinc nanoparticles on antioxidative system of potato plants. J Environ Biol 38(3):435–439CrossRefGoogle Scholar
  104. Rajiv P, Rajeshwari S, Venckatesh R (2013) Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta A Mol Biomol Spectrosc 112:384–387CrossRefPubMedPubMedCentralGoogle Scholar
  105. Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS (2018) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotech Monit Manag 9:76–84Google Scholar
  106. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57CrossRefGoogle Scholar
  107. Ramesh M, Palanisamy K, Babu K, Sharma NK (2014) Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J Glob Biosci 3:415–422Google Scholar
  108. Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol Appl Sci 3:467–473Google Scholar
  109. Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78.  https://doi.org/10.3389/fchem.2017.00078CrossRefPubMedPubMedCentralGoogle Scholar
  110. Read DS, Matzke M, Gweon HS, Newbold LK, Heggelund L, Ortiz MD, Lahive E et al (2016) Soil pH effects on the interactions between dissolved zinc, non-nano and nano-ZnO with soil bacterial communities. Environ Sci Pollut Res Int 23:4120–4128CrossRefPubMedPubMedCentralGoogle Scholar
  111. Rouhani M, Samih MA, Kalantari S (2012) Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer de Fonscolombe (Hemiptera: Aphididae). Chilean J Agric Res 72(4):590–594CrossRefGoogle Scholar
  112. Ruffolo SA, La Russa MF, Malagodi M, Rossi CO, Palermo AM, Crisci GM (2010) ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl Phys A Mater Sci Process 100(3):829–834CrossRefGoogle Scholar
  113. Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. J Sci World 2014:1–8. ID 925494CrossRefGoogle Scholar
  114. Sahithya K, Das N (2016) Application of bimetallic Zn-Ag nanoparticles embedded in MMT-biopolymer nanobiocomposites for the removal of monocrotophos from aqueous environment: equilibrium, kinetic and thermodynamic studies. Pharm Lett 8(9):258–268Google Scholar
  115. Sahoo D, Mandal A, Mitra T, Chakraborty K, Bardhan M, Dasgupta AK (2018) Nanosensing of pesticides by zinc oxide quantum dot: an optical and electrochemical approach for the detection of pesticides in water. J Agric Food Chem 66:414–423CrossRefPubMedPubMedCentralGoogle Scholar
  116. Sangeetha G, Rajeshwari S, Venckatesh R (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int 22(6):693–700CrossRefGoogle Scholar
  117. Sardella D, Gatt R, Valdramidis VP (2018) Assessing the efficacy of zinc oxide nanoparticles against Penicillium expansum by automated turbidimetric analysis. Mycology 9(1):43–48CrossRefPubMedPubMedCentralGoogle Scholar
  118. Sathiyanarayanan S, Ravi PE, Ramesh A (2009) Applications of zinc oxide nanorods as photocatalyst for the decontamination of imidacloprid and spirotetramat residues in water. Open Catal J 2:24–32CrossRefGoogle Scholar
  119. Sawai J, Kawada E, Kanou F, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1996) Detection of active oxygen generated from ceramic powders having antibacterial activity. J Chem Eng Jpn 29(4):627–633CrossRefGoogle Scholar
  120. Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Ann West Univ Timisoara Ser Biol XVI 2:73–78Google Scholar
  121. Selivanov VN, Zorin EV (2001) Sustained action of ultrafine metal powders on seeds of grain crops. Perspekt Mater 4:66–69Google Scholar
  122. Serpone N, Dondi D, Albini A (2007) Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. Inorg Chim Acta 360:794–802CrossRefGoogle Scholar
  123. Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185:211–218CrossRefPubMedPubMedCentralGoogle Scholar
  124. Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2(4):83–92Google Scholar
  125. Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, Liu Y (2011) Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology 6(3):241–248CrossRefPubMedPubMedCentralGoogle Scholar
  126. Shen Z, Chen Z, Hou Z, Li T, Lu X (2015) Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front Environ Sci Eng 9(5):912–918CrossRefGoogle Scholar
  127. Shrestha B, Acosta-Martinez V, Cox SB, Green MJ, Li S, Canas-Carrell JE (2013) An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. J Hazard Mater 261:188–197CrossRefPubMedPubMedCentralGoogle Scholar
  128. Shyla KK, Natarajan N (2014) Customising zinc oxide, silver and titanium dioxide nanoparticles for enhancing groundnut seed quality. Indian J Sci Technol 7(9):1376–1381Google Scholar
  129. Sierra-Fernandez A, De la Rosa-García SC, Gomez-Villalba LS, Gómez-Cornelio S, Rabanal ME, Fort R, Quintana P (2017) Synthesis, photocatalytic, and antifungal properties of MgO, ZnO and Zn/Mg oxide nanoparticles for the protection of calcareous stone heritage. ACS Appl Mater Interfaces 929:24873–24886CrossRefGoogle Scholar
  130. Sillanpaa M (1990) Micronutrient assessment at country level: an international study. FAO, Rome, p 208Google Scholar
  131. Singh A, Singh NB, Afzal S, Singh T, Hussain I (2017) Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J Mater Sci.  https://doi.org/10.1007/s10853-017-1544-1
  132. Stampoulis D, Sinha SK, White JC (2009)Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479. doi: 10.1021/es901695cGoogle Scholar
  133. Sudhakar R, Gowda N, Venu G (2001) Mitotic abnormalities induced by silk dyeing industry effluents in the cells of Allium cepa. Cytologia 66:235–239CrossRefGoogle Scholar
  134. Suman PR, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191Google Scholar
  135. Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3:257–262CrossRefGoogle Scholar
  136. Thunugunta T, Reddy AC, Seetharamaiah SK, Hunashikatt LR, Chandrappa SG, Kalathi NC, Reddy LRDC (2018) Impact of zinc oxide nanoparticles on eggplant (S. melongena): studies on growth and the accumulation of nanoparticles. J IET Nanobiotechnol 12(6):706–713CrossRefGoogle Scholar
  137. Thwala M, Musee N, Sikhwivhilu L, Wepener V (2013) The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. Environ Sci Processes Impacts 15:1830–1843CrossRefGoogle Scholar
  138. Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, et al. (2017) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110: 167–177Google Scholar
  139. Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127CrossRefPubMedPubMedCentralGoogle Scholar
  140. Vitchuli N, Shi Q, Nowak J (2011) Multifunctional ZnO/nylon 6 nanofiber mats by an electrospinning-electrospraying hybrid process for use in protective applications. Sci Technol Adv Mater 12:055004CrossRefPubMedPubMedCentralGoogle Scholar
  141. Waalewijn-Kool PL, Ortiz MD, Lofts S, van-Gestel CA (2013) The effect of pH on the toxicity of zinc oxide nanoparticles to Folsomia candida in amended field soil. Environ Toxicol Chem 32(10):2349–2355CrossRefPubMedPubMedCentralGoogle Scholar
  142. Wagner G, Korenkov V, Judy JD, Bertsch PM (2016) Nanoparticles composed of Zn and ZnO inhibit Peronospora tabacina spore germination in vitro and P. tabacina infectivity on tobacco leaves. Nanomaterials 6:50.  https://doi.org/10.3390/nano6030050CrossRefPubMedCentralGoogle Scholar
  143. Wang B, Feng W, Wang M, Wang TC, Gu YQ, Zhu MT, Ouyang H, Shi JW, Zhang F, Zhao YL et al (2008) Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276CrossRefGoogle Scholar
  144. Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157(4):1171–1177CrossRefPubMedPubMedCentralGoogle Scholar
  145. Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharm Sci 2(3):40–44Google Scholar
  146. Xiang L, Zhao HM, Li YW, Huang XP, Wu XL, Zhai T, Yuan Y, Cai QY, Mo CH (2015) Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ Sci Pollut Res 22:10452–10462CrossRefGoogle Scholar
  147. Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mode of action of ZnO. Appl Environ Microbiol 77:2325–2331CrossRefPubMedPubMedCentralGoogle Scholar
  148. Xu J, Luo X, Wang Y, Feng Y (2017) Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community. Environ Sci Pollut Res 25:6026–6035CrossRefGoogle Scholar
  149. Ye J, Hui Q, Li N (2015) Fabrication of CNFs/ZnO nanocomposites with enhanced photocatalytic activity and mechanical properties. Fibers Polym 16:113–119CrossRefGoogle Scholar
  150. Yehia RS, Ahmed OF (2013) In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicillium expansum. Afr J Microbiol Res 7:1917–1923CrossRefGoogle Scholar
  151. Zafar H, Ali A, Ali JS, Haq IU, Zia M (2016) Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Front Plant Sci 7:535.  https://doi.org/10.3389/fpls.2016.00535CrossRefPubMedPubMedCentralGoogle Scholar
  152. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9(3):479–489CrossRefGoogle Scholar
  153. Zhang RC, Zhang HB, Tu C, Hu XF, Li LZ, Luo YM, Christie P (2015) Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ Sci Pollut Res 22:11109–11117CrossRefGoogle Scholar
  154. Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA, Renato JA, Gardea-Torresdey JL (2012) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. J Chem Eng 184:1–8CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Manal Mostafa
    • 1
  • Hassan Almoammar
    • 2
  • Kamel A. Abd-Elsalam
    • 3
    • 4
  1. 1.CIHEAM IAMB – Mediterranean Agronomic Institute of BariValenzanoItaly
  2. 2.ETH Zürich, Department of Biology, Institute of MicrobiologyZürichSwitzerland
  3. 3.Plant Pathology Research Institute, Agricultural Research Center (ARC)GizaEgypt
  4. 4.Unit of Excellence in Nano-Molecular Plant Pathology Research – Plant Pathology Research InstituteGizaEgypt

Personalised recommendations