Bio-Engineered Nanomaterials for Plant Growth Promotion and Protection

  • Naradala Jayarambabu
  • Kalagadda Venkateswara RaoEmail author
Part of the Nanotechnology in the Life Sciences book series (NALIS)


We proposed that nano-biotechnology could implement sustainable agriculture by reducing use of fertilizers, pesticides, and water by enhancing their efficiency. This approach to biology allows researchers to imagine and create systems that can be used for biological needs. Biologically inspired nanotechnology uses biology as the inspiration for technologies not yet created. Synthesized nanoparticles such as metal or metal oxides and carbon nanotubes (CNTs) have positive and negative impacts on seed germination and plant growth promotion. Studies of metal or metal oxide nanoparticles have shown more efficient results. The seed germination process encompasses different steps such as imbibition, respiration, effect of light on seed germination, phytochrome and reversible red–far-red control, mobilization of reserves during seed germination and the role of growth regulators, and development of the embryo axis into seedlings. This chapter discusses the activity of biological nanoparticles on crop seeds and seed germination.


Bio-nanoparticles Seed germination Nutrients Plant growth protection 


  1. Abd-Elsalam KA, Prasad R (2018) Nanobiotechnology applications in plant protection. Springer International Publishing, Cham, p 394. Scholar
  2. Adhikari T, Kundu S, Biswas AK, Tarafdar GC, Rao AS (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol 9(2):815–823Google Scholar
  3. Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22(11):585–594CrossRefGoogle Scholar
  4. Ditta A, Arshad M, Ibrahim M (2015) Nanoparticles in sustainable agricultural crop production: applications and perspectives. J Nanotechnol Plant Sci 7(9):23–34Google Scholar
  5. Fakruddin M, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnol 10(1):31CrossRefGoogle Scholar
  6. Falco WF, Queiroz AM, Fernandes J, Botero ER, Falcão EA, Guimarães FEG, Caires ARL (2014) Interaction between chlorophyll and silver nanoparticles: a close analysis of chlorophyll fluorescence quenching. J Photochem Photobiol A Chem 112(299):203–209Google Scholar
  7. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792CrossRefGoogle Scholar
  8. Gopal M, Gogoi R, Srivastava C, Kumar R, Singh P, Nair K, Yadav S, Goswami A (2011) Nanotechnology and its application in plant protection. Plant Pathol India 3(6):224–230Google Scholar
  9. Gopinath K, Venkatesh KS, Ilangovan R, Sankaranarayanan K, Arumugama A (2013) Green synthesis of gold nanoparticles from leaf extract of Terminaliaarjuna, for the enhanced mitotic cell division and pollen germination activity. Indust Crops Prod 71(50):737–742CrossRefGoogle Scholar
  10. Hong J, Peralta-Videa JR, Rico C, Sahi S, Viveros MN, Bartonjo J, Zhao L, Gardea-Torresdey JL (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48(8):4376–4385CrossRefGoogle Scholar
  11. Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 4(8).12):16CrossRefGoogle Scholar
  12. Jayarambabu N, Siva Kumari B, Venkateswara Rao K (2014) Germination and growth characteristics of mungbean seeds (Vigna radata L.) affected by synthesized zinc oxide nanoparticles. Int J Curr Eng Technol 4(9):32–38Google Scholar
  13. Jhansi K, Jayarambabu N, Paul Reddy K, Manohar Reddy N, Padma Suvarna R, Venkateswara Rao K, Rajendar V (2017) Biosynthesis of MgO nanoparticles using mushrooms extract: effect on Peanut (Arachis hypogaea L.) seed germination. 3 Biotech 5(8):20–27Google Scholar
  14. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Alexandru Biris S (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227CrossRefGoogle Scholar
  15. Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small. 14;9(1):115–123Google Scholar
  16. Kole C, Kole P, Manoj Randunu K, Choudhary P, Podila R, Chun Ke P, Rao AM, Marcus RK (2013) Nano-biotechnology can boost crop production and quality first evidence from increased plant biomass fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 23(3):13–37Google Scholar
  17. López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Peralta- Videa JR, Gardea-Torresdey JL. (2010) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 26;58(6):3689–3693Google Scholar
  18. Mahajan P, Dhoke SK, Khanna AS (2011) Effect of Nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011:1. Scholar
  19. Mukherjee A, Pokhrel S, Bandyopadhyay S, Mädler L, Peralta-Videa JR, Gardea-Torresdey JL (2014) A soil mediated phyto-toxicological study of iron doped zinc oxide nanoparticles (Fe@ZnO) in green peas (Pisum sativum L.). J Chem Eng 258(23):394–401CrossRefGoogle Scholar
  20. Mura S, Chianella I, Greppi GF (2017) Nanotechnology in agriculture and food sciences. I Georgofili 12(2):169–209Google Scholar
  21. Najafi S, Rashid Jamei NF (2014) Effect of silver nanoparticles and magnetic field on the yield and chemical composition of Triticum aestivum L. seedlings. Bull Environ Pharmacol Life Sci 3(2):263–268Google Scholar
  22. Ngo QB, Dao TH, Nguyen HC, Tran XT, Van Nguyen T, Khuu TD, Huynh TH (2014) Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Adv Natl Sci: Nanosci Nanotechnol 5(1):015016Google Scholar
  23. Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities. J Nanotoday 10:124–127CrossRefGoogle Scholar
  24. Peng C, Duan D, Xu C, Chen Y, Sun L, Zhang H, Yuan X, Zheng L, Yan Y, Yang J, Zhen X, Chen Y, Shi J (2015) Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environ Poll 8(9):99–107CrossRefGoogle Scholar
  25. Prasad TN, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 43(21):905–927CrossRefGoogle Scholar
  26. Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, Raliya R, Biswas P (2015) Synthesis and in vitro antifungal efficacy of cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 9(75):346–353CrossRefGoogle Scholar
  27. Salama HMH (2012) Effects of silver nanoparticles in some crop plants common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3(10):190–197Google Scholar
  28. Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Notulac Sci Biol 2(2):112–113CrossRefGoogle Scholar
  29. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). J Biol Sci 21(1):13–17Google Scholar
  30. Srivastava A, Rao DP (2014) Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes. Eur Chem Bull 3(5):502–504Google Scholar
  31. Tiwari DK, Dasgupta-Schubert N, Villasen LM, Carreto Montoya L, Borjas Garc SE (2013) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth water and ionic nutrient uptake in maize (Zea mays) and implications for nano agriculture. Appl Nanosci 4(5):30–39Google Scholar
  32. Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. R Soc Chem 3(3):1176–1181Google Scholar
  33. Trujillo-Reyesa J, Vilchis-Nestorb AR, Majumdara S, Peralta-Videaa JR, Gardea-Torresdeya L (2013) Citric acid modifies surface properties of commercial CeO2 nanoparticles reducing their toxicity and cerium uptakein radish (Raphanus sativus) seedlings. J Hazard Mater 34(3):677–684CrossRefGoogle Scholar
  34. Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR, Tang X, Niu G, Jin L, Varela-Ramirez A, Zhang JY (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2 heat shock protein, and lipid peroxidation. ACS Nano 6(11):9615–9622CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Naradala Jayarambabu
    • 1
  • Kalagadda Venkateswara Rao
    • 1
    Email author
  1. 1.Centre for Nano Science and TechnologyIST, Jawaharlal Nehru Technological UniversityHyderabadIndia

Personalised recommendations