Role of Nanotechnology Applications in Plant-Parasitic Nematode Control

  • Al-Kazafy Hassan Sabry
Part of the Nanotechnology in the Life Sciences book series (NALIS)


It has been estimated by the International Meloidogyne Project that nematodes cause annual losses of 78 billion US dollars in developed countries and more than 100 billion in developing countries. Plant-parasitic nematodes are very small organisms that cannot be seen by the naked eye and are considered to be microscopic creatures. The gravity of these nematodes is epitomized by the infestation of plant roots that causes a wide range of symptoms including stunting, wilting, yellowing, reduction of flowering, fruit set, and fruit development, dieback, and sometimes even plant death. Control of these nematodes is very difficult because once the plant-parasitic nematodes are established in the soil, soil sterilization may be required. Conventional controls were not sufficient to suppress this pest, so new trends in pest control must be found. Nanotechnology is one of the solutions to overcome these pests by using modern pesticide formulations such as nano-capsules, nanoparticles, and nano-suspension pesticides against plant-parasitic nematodes.


Plant-parasitic nematodes Damages Nanotechnology Bio-nanoparticles Nanoparticles 


  1. Abbassy MA, Abdel-Rasoul MA, Nassar AMK, Soliman BSM (2017) Nematicidal activity of silver nanoparticles of botanical products against rootknot nematode, Meloidogyne incognita. Arch Phytopathol Plant Prot 50(17–18):909–926CrossRefGoogle Scholar
  2. Abdellatif KF, Hamouda RA, El-Ansary MSM (2016) Green nanoparticles engineering on root-knot nematode infecting eggplants and their effect on plant DNA modification. Iran J Biotechnol 14(4):250–259CrossRefGoogle Scholar
  3. Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140CrossRefGoogle Scholar
  4. Ardakani AS (2013) Toxicity of silver, titanium and silicon nanoparticles on the root-knot nematode, Meloidogyne incognita and growth parameters of tomato. Nematology 15(6):671–677CrossRefGoogle Scholar
  5. Bai J, Li Y, Du J, Wang S, Zheng J, Yang Q, Chen X (2007) One-pot synthesis of polyacrylamide-gold nanocomposite. Mater Chem Phys 106:412–415CrossRefGoogle Scholar
  6. Benelli G (2018) Mode of action of nanoparticles against insects. Environ Sci Pollut Res Int 25:12329–12341CrossRefGoogle Scholar
  7. Cao J, Guenther RH, Sit TL, Lommel SA, Opperman CH, Willoughby JA (2015) Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control. ACS Appl Mater Interfaces 7(18):9546–9553CrossRefGoogle Scholar
  8. Chariou PL, Steinmetz NF (2017) Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a nanocarrier. ACS Nano 11(5):4719–4730CrossRefGoogle Scholar
  9. Cheng C, Qin J, Wu C, Lei M, Wang Y, Zhang L (2018) Suppressing a plant-parasitic nematode with fungivorous behavior by fungal transformation of a Bt cry gene. Microb Cell Fact 17(116):1–14Google Scholar
  10. Chitwood DJ (2003) Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture – Agricultural Research Service. Pest Manag Sci 59:748–753CrossRefGoogle Scholar
  11. Cromwell WA, Yang J, Starr JL, Jo YK (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. J Nematol 46(3):261–266PubMedPubMedCentralGoogle Scholar
  12. Dolgaev SI, Simakin AV, Voronov VV, Shafeev GA, Bozon-Verduraz F (2002) Nanoparticles produced by laser ablation of solids in liquid environment. Appl Surf Sci 186:546–551CrossRefGoogle Scholar
  13. Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A 369(1–3):27–33CrossRefGoogle Scholar
  14. Fisher MH, Mrozik H (1989) Chemistry In: Campbell WC (ed) Ivermectin and abamectin. Springer, Berlin-Heidelberg, New York, pp 1–23Google Scholar
  15. Fu Z, Chen K, Li L, Zhao F, Wang Y, Wang M, Shen Y, Cui H, Liu D, Guo X (2018) Spherical and spindle-like abamectin-loaded nano particles by flash nanoprecipitation for southern root-knot nematode control: Preparation and characterization. Nanomaterials (Basel) 8(449):1–12Google Scholar
  16. Guenther RH, Lommel SA, Opperman CH, Sit TL (2018) Plant virus-based nanoparticles for the delivery of agronomic compounds as a suspension concentrate. In: Wege C, Lomonossoff G (eds) Virus-derived nanoparticles for advanced technologies. Methods in molecular biology, vol 1776. Humana Press, New YorkGoogle Scholar
  17. Hardman R (2006) Toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172CrossRefGoogle Scholar
  18. Hesling JJ, Wallace HR (1961) Observations on the biology of chrysanthemum eelworm Aphelenchoides ritzema-bosi (Schwartz) Steiner in florists chrysanthemum. Ann Appl Biol 49:195–209CrossRefGoogle Scholar
  19. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650CrossRefGoogle Scholar
  20. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406PubMedPubMedCentralGoogle Scholar
  21. Jawaad RS, Sultan KF, Al- Hamadani AH (2014) Synthesis of silver nanoparticles. ARPN J Eng Appl Sci 9(4):586–592Google Scholar
  22. Jung J, Oh H, Noh H, Ji J, Kim S (2006) Metal nanoparticle generation using a small ceramic heater with a local heating area. J Aerosol Sci 37:1662–1670CrossRefGoogle Scholar
  23. Kalaiselvi D, Sundararaj P, Premasudha P, Hafez SL (2017) Nematicidal activity of green synthesized silver nanoparticles using plant extracts against root-knot nematode meloidogyne incognita. Int J Nematol 22(1 and 2):81–94Google Scholar
  24. Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62:4411–4413CrossRefGoogle Scholar
  25. Kawasaki M, Nishimura N (2006) 1064-nm laser fragmentation of thin Au and Ag flakes in acetone for highly productive pathway to stable metal nanoparticles. Appl Surf Sci 253:2208–2216CrossRefGoogle Scholar
  26. Lambert K, Bekal S (2002) Introduction to plant-parasitic nematodes. Plant Health Instr.
  27. Lim D, Roh JY, Eom HJ, Hyun JW, Choi J (2012) Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ Toxicol Chem 31:585–592CrossRefGoogle Scholar
  28. Matsumura Y, Yoshikata K, Kunisaki SI, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281CrossRefGoogle Scholar
  29. Memon AR, Schroder P (2008) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175CrossRefGoogle Scholar
  30. Merga G, Wilson R, Lynn G, Milosavljevic B, Meisel D (2007) Redox catalysis on “naked” silver nanoparticles. J Phys Chem C 111:12220–12206CrossRefGoogle Scholar
  31. Myczko A (2006) The application of nanotechnology to the agricultural practice. Inz Rol 10:45–50Google Scholar
  32. Nair PMG, Choi J (2011) Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat Toxicol 101(3):550–560CrossRefGoogle Scholar
  33. Nakamura M, Tahara Y, Fukata S, Zhang M, Yang M, Iijima S, Yudasaka M (2017) Significance of optimization of phospholipid poly(Ethylene glycol) quantity for coating carbon nanohorns to achieve low cytotoxicity. Bull Chem Soc Jpn 90:662–666CrossRefGoogle Scholar
  34. Narkhede CP, Suryawanshi RK, Patil CD, Borase HP, Patil SV (2016) Use of protease inhibitor gold nanoparticles as a compatibility enhancer for Bt and deltamethrin: a novel approach for pest control. Biocatal Agric Biotechnol 8:8–12CrossRefGoogle Scholar
  35. Nassar AMK (2016) Effectiveness of silver nano-particles of extracts of Urtica urens (Urticaceae) against root-knot nematode Meloidogyne incognita. Asian J Nematol 5:14–19CrossRefGoogle Scholar
  36. Noling JW, Becker JO (1994) The challenge of research and extension to define and implement alternatives to methyl bromide. J Nematol 26:573–586PubMedPubMedCentralGoogle Scholar
  37. Nour El-Deen AH, El-Deeb BA (2018) Effectiveness of silver nanoparticles against root-knot nematode, Meloidogyne incognita infecting tomato under greenhouse conditions. J Agric Sci 10(2):148–156Google Scholar
  38. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32CrossRefGoogle Scholar
  39. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83CrossRefGoogle Scholar
  40. Saifuddin N, Wong CW, NurYasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J Chem 6:61–70CrossRefGoogle Scholar
  41. Sandhu SS, Shukla H, Shukla S (2017) Biosynthesis of silver nanoparticles by endophytic fungi: its mechanism, characterization techniques and antimicrobial potential. Afr J Biotechnol 16:683–698CrossRefGoogle Scholar
  42. Shoaib A, Elabasy A, Waqas M, Lin L, Cheng X, Zhang Q, Shi ZH (2018) Entomotoxic effect of silicon dioxide nanoparticles on Plutella xylostella (L.) (Lepidoptera: Plutellidae) under laboratory conditions. Toxicol Environ Chem 100(1):80–91CrossRefGoogle Scholar
  43. Sondi I, Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRefGoogle Scholar
  44. Song HY, Ko KK, Oh LH, Lee BT (2006) Fabrication of silver nanoparticles and their antimicrobial mechanisms. Eur Cell Mater 11(Suppl 1):58Google Scholar
  45. Sorribas FJ, Ornat C, Verdejo-Lucas S, Galeano M, Valero J (2005) Effectiveness and profitability of the Mi-resistant tomatoes to control root-knot nematodes. Eur J Plant Pathol 111:29–38CrossRefGoogle Scholar
  46. Southey JF (1972) Anguinatritici. Commonwealth institute of helminthology descriptions of plant parasitic nematodes, Set 1, No. 13, St. Albans, Cab International Wallingford, UK, pp 1–4Google Scholar
  47. Tao A, Sinsermsuksakul P, Yang P (2006) Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem Int Ed 45:4597–4601CrossRefGoogle Scholar
  48. Thakur RK, Shirkot P (2017) Potential of biogold nanoparticles to control plant pathogenic nematodes. J Bioanal Biomed 9:220–222Google Scholar
  49. Tien D-C, Tseng K-H, Liao C-Y, Huang J-C, Tsung TT (2008) Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method. J Alloys Compd 463:408–411CrossRefGoogle Scholar
  50. Troupis A, Hiskia A, Papaconstantinou E (2002) Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. Angew Chem Int Ed Engl 41(11):1911–1914CrossRefGoogle Scholar
  51. Tsuji T, Kakita T, Tsuji M (2003) Preparation of nano-size particle of silver with femtosecond laser ablation in water. Appl Surf Sci 206:314–320CrossRefGoogle Scholar
  52. Veerasamy R, Xin TZ, Gunasagaran S, Xiang TFW, Yang EFC, Jeyakumar N, Dhanaraj SA (2011) Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc 15:113–120CrossRefGoogle Scholar
  53. Wang M, Yang N, Guo Z, Gu K, Shao A, Zhu W, Xu Y, Wang J, Prud’Homme RK, Guo X (2015) Facile preparation of AIE-active fluorescent nanoparticles through flash nanoprecipitation. Ind Eng Chem Res 54:4683–4688CrossRefGoogle Scholar
  54. Wyss U (1997) Root parasitic nematodes: an overview. In: Fenoll C, Grundler FMW, Ohl SA (eds) Cellular and molecular aspects of plant-nematode interactions, vol 10. Kluwer Academic Publishers, Dordrecht, pp 5–24CrossRefGoogle Scholar
  55. Zunke U (1991) Observations on the invasion and endoparasitic behavior of the root lesion nematode Pratylenchus penetrans. J Nematol 22:309–320Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Al-Kazafy Hassan Sabry
    • 1
  1. 1.Pests and Plant Protection Department, National Research CentreCairoEgypt

Personalised recommendations