Nanodiagnostic Techniques in Plant Pathology

  • Tahsin ShoalaEmail author
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Nanotechnology offers new, advanced, and innovative diagnostic techniques advantaged with on-site detection, high sensitivity, accuracy, speed, and low cost which could positively and successfully decrease the negative impacts of plant pathogens. Nanotechnology offered sophisticated, advanced, and diagnostic techniques to enhance plant diagnostic techniques and tools. For example, incorporation between immunological and molecular diagnostic techniques with nanotechnology could simply offer new diagnostic techniques and tools. Nanodiagnostic technique positively can be applied to detect different phytopathogens on-site by using portable nanodevices, nanochips, lab-on-a-chip, and lab-on-a-box. Also, metallic nanoparticles could be applied as nanosensors for detecting different plant pathogens. Additionally, polymeric nanoparticles and carbon nanotubes could be used as nanobiosensors for diagnosing different plant pathogens. Finally, nanoparticles could offer new, quick, sensitive, and accurate on-site diagnostic techniques for different plant pathogens. In conclusion, nanodiagnostic techniques are the innovative solution for detecting phytopathogens, and it will replace other current advanced techniques.


  1. Al-Dhabaan FA, Yousef H, Shoala T, Shaheen J, El Sawi Y, Farag T (2018) Enhancement of fungal DNA templates and PCR amplification yield by three types of nanoparticles. J Plant Prot Res 58(1):66–72Google Scholar
  2. Ariffin SAB, Adam T, Hashim U, Faridah S, Zamri I, Uda MNA (2014) Plant diseases detection using nanowire as biosensor transducer. Adv Mater Res 832:113–117CrossRefGoogle Scholar
  3. Bakhori NM, Yusof NA, Abdullah AH, Hussein MZ (2013) Development of a fluorescence resonance energy transfer (FRET)-based DNA biosensor for detection of synthetic oligonucleotide of Ganoderma boninense. Biosensors 3(4):419–428PubMedCrossRefGoogle Scholar
  4. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385(3):452–468Google Scholar
  5. Bhatia S (2016) Marine polysaccharides based nano-materials and its applications. In: Natural polymer drug delivery systems. Springer International Publishing, Switzerland, pp 185–225CrossRefGoogle Scholar
  6. Chuan Li S, Hua Chen J, Cao H, Sheng Yao D, Ling Liu D (2011) Amperometric biosensor for aflatoxin B 1 based on aflatoxin-oxidase immobilized on multiwalled carbon nanotubes. Food Control 22(1):43–49CrossRefGoogle Scholar
  7. Chauhan S, Upadhyay MK, Rishi N et al (2011) Phytofabrication of silver nanoparticles using pomegranate fruit seeds. Int J Nanomater Biostruct 1:17–21Google Scholar
  8. Du D, Huang X, Cai J, Zhang A (2007) Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor. Biosens Bioelectron 23(2):285–289PubMedCrossRefGoogle Scholar
  9. Dubas ST, Pimpan V (2008) Green synthesis of silver nanoparticles for ammonia sensing. Talanta 76:29–33PubMedCrossRefGoogle Scholar
  10. Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19:365–370PubMedCrossRefGoogle Scholar
  11. Eastman PS, Ruan W, Doctolero M, Nuttall R, de Feo G, Park JS, Chu JSF, Cooke P, Gray JW, Li S, Chen FF (2006) Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett 6(5):1059–1064PubMedCrossRefGoogle Scholar
  12. Etefagh R, Azhir E, Shahtahmasebi N (2013) Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci Iran 20:1055–1058Google Scholar
  13. Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors 5(3):537–561PubMedPubMedCentralCrossRefGoogle Scholar
  14. Fang Y, Umasankar Y, Ramasamy RP (2014) Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst 139(15):3804–3810PubMedCrossRefGoogle Scholar
  15. Figeys D, Pinto D (2000) Lab-on-a-chip: a revolution in biological and medical sciences. Anal Chem 72:330A–335APubMedCrossRefGoogle Scholar
  16. Goluch ED, Nam JM, Georganopoulou DG, Chiesl TN, Shaikh KA, Ryu KS, Barron AE, Mirkin CA, Liu C (2006) Bio-barcode assay for on-chip attomolar-sensitivity protein detection. Lab Chip 6(10):1293–1299PubMedCrossRefGoogle Scholar
  17. González-Melendi P, Fernandez-Pacheco R, Coronado MJ, Corredor E et al (2007) Nanoparticles as smart treatment delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101(1):187–195Google Scholar
  18. González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano P, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101(1):187–195PubMedCrossRefGoogle Scholar
  19. Heard S, West JS (2014) New developments in identification and quantification of airborne inoculum. In: Detection and diagnostics of plant pathogens. Springer, Netherlands, pp 3–19Google Scholar
  20. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4728PubMedCrossRefGoogle Scholar
  21. Julich S, Riedel M, Kielpinskia M, Urbana M, Kretschmerc R, Wagnerb S, Fritzschea W, Henkela T, Mollerc R, Werres S (2011) Development of a lab-on-a-chip device for diagnosis of plant pathogens. Biosens Bioelectron 26:4070–4075PubMedCrossRefGoogle Scholar
  22. Kashyap PL, Rai P, Sharma S, Chakdar H, Kumar S, Pandiyan K, Srivastava AK (2016) Nanotechnology for the detection and diagnosis of plant pathogens. In: Ranjan S et al (eds) Nanoscience in food and agriculture 2, sustainable agriculture reviews 21. Springer, BaselGoogle Scholar
  23. Kattke MD, Gao EJ, Sapsford KE, Stephenson LD, Kumar A (2011) FRET-based quantum dot immunoassay for rapid and sensitive detection of Aspergillus amstelodami. Sensors 11(6):6396–6410PubMedCrossRefGoogle Scholar
  24. Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd–Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785PubMedPubMedCentralCrossRefGoogle Scholar
  25. Koo C, Malapi-Wight M, Kim HS, Cifci OS, Vaughn-Diaz VL (2013) Development of a real-time microchip PCR system for portable plant disease diagnosis. PLoS One 8:e82704PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kricka LJ (2001) Microchips, microarrays, biochips and nanochips: personal laboratories for the 21st century. Clin Chim Acta 307:219–223PubMedCrossRefGoogle Scholar
  27. Lattanzio VMT, Nivarlet N, Lippolis V, Gatta SD et al (2012) Multiplex dipstick immunoassay for semi-quantitative determination of Fusarium mycotoxins in cereals. Anal Chim Acta 718:99–108PubMedCrossRefGoogle Scholar
  28. Mak AC, Osterfeld SJ, Yu H, Wang SX, Davis RW, Jejelowo OA, Pourmand N (2010) Sensitive giant magnetoresistive-based immunoassay for multiplex mycotoxin detection. Biosens Bioelectron 25(7):1635–1639PubMedCrossRefGoogle Scholar
  29. Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR (2015) Advanced methods of plant disease detection. A review. Agron Sustain Dev 35(1):1–25CrossRefGoogle Scholar
  30. Mccandless L (2005) Nanotechnology offers new insights into plant pathology. College of Agriculture and Life Sciences News, Cornell University, pp 17–18Google Scholar
  31. Meng Y, Li Y, Galvani CD, Hao G, Turner JN, Burr TJ, Hoch H (2005) Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J Bacteriol 187(16):5560–5567PubMedPubMedCentralCrossRefGoogle Scholar
  32. Mody HR (2011) Cancer nanotechnology: recent trends and developments. Int J Med Update 6(1):3. Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172Google Scholar
  33. Nam JM, Stoeva SI, Mirkin CA (2004) Bio-bar-code-based DNA detection with PCR-like sensitivity. J Am Chem Soc 126(19):5932–5933PubMedCrossRefGoogle Scholar
  34. Neethirajan S, Freund M, Jayas D, Shafai C, Thomson D, White N (2010) Development of carbon dioxide (CO2) sensor for grain quality monitoring. Biosyst Eng 106(4):395–404CrossRefGoogle Scholar
  35. Nezhad AS (2014) Future of portable devices for plant pathogen diagnosis. Lab Chip 14:2887–2904PubMedCrossRefGoogle Scholar
  36. Nie L (2013) Biomedical nanotechnology for optical molecular imaging, diagnostics, and therapeutics. JSM Nanotechnol Nanomed 1(1):1–2Google Scholar
  37. Pal S, Ying W, Alocilja EC, Downes FP (2008) Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices. Biosyst Eng 99(4):461–468CrossRefGoogle Scholar
  38. Pimentel D (2009) Invasive plants: their role in species extinctions and economic losses to agriculture in the USA. In: Inderjit (ed) Management of invasive weeds, invading nature— Springer series in invasion ecology. Springer, Dordrecht, pp 1–7Google Scholar
  39. Prasad R, Pandey R, Varma A, Barman I (2017) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, CABI, pp 53–70Google Scholar
  40. Rad F, Mohsenifar A, Tabatabaei M, Safarnejad M, Shahryari F, Safarpour H, Foroutan A, Mardi M, Davoudi D, Fotokian M (2012) Detection of Candidatus Phytoplasma aurantifolia with a quantum dots FRET-based biosensor. J Plant Pathol 94(3):525–534Google Scholar
  41. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293PubMedCrossRefGoogle Scholar
  42. Rispail N, De Matteis L, Santos R, Miguel AS, Custardoy L, Testillano PS, Risueño MC, Pérez-de-LuqueA MC, Fevereiro P (2014) Quantum dot and superparamagnetic nanoparticle interaction with pathogenic fungi: internalization and toxicity profile. ACS Appl Mater Interfaces 6(12):9100–9110PubMedCrossRefGoogle Scholar
  43. Rosen J, Yoffe S, Meerasa A, Verma M, Gu F (2011) Nanotechnology and diagnostic imaging: new advances in contrast agent technology. J Nanomed Nanotechnol 2:115CrossRefGoogle Scholar
  44. Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:8CrossRefGoogle Scholar
  45. Sadanandom A, Napier RM (2010) Biosensors in plants. Curr Opin Plant Biol 13(6):736–743PubMedCrossRefGoogle Scholar
  46. Sadowski Z (2010) Chapter 13: Biosynthesis and application of silver and gold nanoparticles. In: Perez DP (ed) Silver nanoparticles. Intech, ViennaGoogle Scholar
  47. Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A, Rad F, Basirat M, Shahryari F, Hasanzadeh F (2012) Development of a quantum dots FRET based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol 34(4):507–515CrossRefGoogle Scholar
  48. Saini RK, Bagri LP, Bajpai AK (2017) Smart nanosensors for pesticide detection. In: Grumezescu AM (ed) New pesticides and soil sensors. Academic Press, United Kingdom, pp 519–559Google Scholar
  49. Schofield CL, Haines AH, Field RA, Russell DA (2006) Silver and gold glyconanoparticles for colorimetric bioassays. Langmuir 22(15):6707–6711PubMedCrossRefGoogle Scholar
  50. Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83Google Scholar
  51. Silva AT, Nguyen A, Ye C, Verchot J, Moon JH (2010) Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts. BMC Plant Biol 10:291PubMedPubMedCentralGoogle Scholar
  52. Singh P, Kumari K, Vishvakrma VK, Mehrotra GK, Chandra R, Kumar D, Patel R, Shahare VV (2017) Metal NPs (Au, Ag, and Cu): synthesis, stabilization, and their role in green chemistry and drug delivery. In: Singh R, Kumar S (eds) Green technologies and environmental sustainability. Springer, Cham, pp 309–337CrossRefGoogle Scholar
  53. Srinivasan B, Tung S (2015) Development and applications of portable biosensors. J Lab Autom 20:365–389PubMedCrossRefGoogle Scholar
  54. Serag MF, Kaji N, Habuchi S, Bianco A, Baba Y (2013) Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Adv 3(15):4856–4863.Google Scholar
  55. Sun Y-F, Liu S-B, Meng F-L, Liu J-Y, Jin Z, Kong L-T, Liu J-H (2012) Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3):2610–2631PubMedCrossRefGoogle Scholar
  56. Szeghalmi A, Kaminskyj S, Rösch P, Popp J et al (2007) Time fluctuations and imaging in the SERS spectra of fungal hypha grown on nanostructured substrates. J Phys Chem B 111:12916–12924PubMedCrossRefGoogle Scholar
  57. Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22(12):2848–2853PubMedCrossRefGoogle Scholar
  58. Verma ML (2017) Enzymatic nanobiosensors in the agricultural and food industry. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 4. Sustainable agriculture reviews, vol 24. Springer, Cham, pp 229–245Google Scholar
  59. Wang J, Deo RP, Musameh M (2003a) Stable and sensitive electrochemical detection of phenolic compounds at carbon nanotube modified glassy carbon electrodes. Electroanalysis 15(23–24):1830–1834CrossRefGoogle Scholar
  60. Wang J, Liu G, Jan MR, Zhu Q (2003b) Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags. Electrochem Commun 5(12):1000–1004CrossRefGoogle Scholar
  61. Wang Z, Wei F, Liu S-Y, Xu Q, Huang J-Y, Dong X-Y, Yu J-H, Yang Q, Zhao Y-D, Chen H (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta 80(3):1277–1281PubMedCrossRefGoogle Scholar
  62. West JS, Heard S, Canning GGM, Fraaije BA, Hammond Kosack K (2013) New developments in identification and quantification of airborne inoculums. Acta Phytopathol Sin 43(Suppl):16. International Congress of Plant Pathology 2013 abstract O01.002Google Scholar
  63. Wu K, Sun Y, Hu S (2003) Development of an amperometric indole-3-acetic acid sensor based on carbon nanotubes film coated glassy carbon electrode. Sensors Actuators B Chem 96(3):658–662CrossRefGoogle Scholar
  64. Yao KS, Li SJ, Tzeng KC, Cheng TC et al (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Multi-Funct Mater Struct II 7982:513–516Google Scholar
  65. Yu X, Chattopadhyay D, Galeska I, Papadimitrakopoulos F, Rusling JF (2003) Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem Commun 5(5):408–411Google Scholar
  66. Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005a) Single-quantum-dot-based DNA nanosensor. Nat Mater 4(11):826–831. Scholar
  67. Zhang H, Balaban M, Portier K, Sims CA (2005b) Quantification of spice mixture compositions by electronic nose: part II. Comparison with GC and sensory methods. J Food Sci 70:E259–E264CrossRefGoogle Scholar
  68. Zhang Y, Arugula MA, Wales M, Wild J, Simonian AL (2015) A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non-organophosphorus pesticides. Biosens Bioelectron 67:287–295PubMedCrossRefGoogle Scholar
  69. Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Pro Natl Acad Sci USA 101(42):15027–15032CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Environmental BiotechnologyCollege of Biotechnology, Misr University for Science and TechnologyGizaEgypt

Personalised recommendations