Advertisement

Unsteady Open Channel Flows: Basic Solutions

  • Oscar Castro-OrgazEmail author
  • Willi H. Hager
Chapter

Abstract

Flow conditions in rivers are usually unsteady (Cunge et al. 1980; Sturm 2001; Chaudhry 2008), even though steady flow computations are conducted in engineering applications, as for determining an inundation area in hydrological studies. Further, the operation of man-made canals to control the water released from reservoirs implies unsteady maneuvers resulting in transient open channel flows.

References

  1. Abbott, M. B. (1975). Computational hydraulics: A short pathology. Journal of Hydraulic Research, 14(4), 271–285.CrossRefGoogle Scholar
  2. Ayuso, J. L. (1990). Circulación de flujos: métodos de cálculo usuales en el diseño de canales y embalses en pequeñas cuencas [Flood routing: Usual methods in the design of canals and reservoirs in small drainage basins]. Córdoba, Spain: University of Córdoba Press (in Spanish).Google Scholar
  3. Castro-Orgaz, O., & Chanson, H. (2016). Minimum specific energy and transcritical flow in unsteady open channel flow. Journal of Irrigation and Drainage Engineering, 142(1), 04015030.CrossRefGoogle Scholar
  4. Castro-Orgaz, O., & Hager, W. H. (2009). Classical hydraulic jump: Basic flow features. Journal of Hydraulic Research, 47(6), 744–754.CrossRefGoogle Scholar
  5. Chanson, H. (2004). The hydraulics of open channel flows: An introduction. Oxford, UK: Butterworth-Heinemann.Google Scholar
  6. Chaudhry, M. H. (2008). Open-channel flow (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  7. Chaudhry, M. H. (2014). Applied hydraulic transients (3rd ed.). New York: Springer.CrossRefGoogle Scholar
  8. Chow, V. T. (1959). Open channel hydraulics. New York: McGraw-Hill.Google Scholar
  9. Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology. New York: McGraw-Hill.Google Scholar
  10. Cunge, J. A. (1975). Rapidly varying flow in power and pumping canals (Chap. 14). In K. Mahmood & V. Yevjevich (Eds.), Unsteady flow in open channels, 2, 539–586. Fort Collins, CO, USA: Water Resources Publications.Google Scholar
  11. Cunge, J. A., Holly, F. M., & Verwey, A. (1980). Practical aspects of computational river hydraulics. London: Pitman.Google Scholar
  12. De Saint-Venant, A. B. (1870). Démonstration élémentaire de la formule de propagation d’une onde ou d’une intumescence dans un canal prismatique; et remarques sur les propagations du son et da la lumière sur les ressauts, ainsi que sur la distinction des rivières et des torrents [Elementary demonstration of the formula of propagation of a wave or a disturbance in a prismatic channel; and remarks on the propagations of sound, light, and bores, as also on the distinction between a river and a torrent: Part 1]. Comptes Rendus de l’Académie des Sciences, 71, 186–195 (in French).zbMATHGoogle Scholar
  13. De Saint-Venant, A. B. (1871). Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l’introduction des marrées dans leur lit [Theory of unsteady water movement, applied to floods in rivers and the effect of tidal flows: Part 2]. Comptes Rendus de l’Académie des Sciences, 73, 147–154 (in French).zbMATHGoogle Scholar
  14. Favre, H. (1935). Etude théorique et expérimentale des ondes de translation dans les canaux découverts [Theoretical and experimental study of travelling surges in open channels]. Paris, France: Dunod (in French).Google Scholar
  15. Fenton, J. D. (1992). Reservoir routing. Hydrological Sciences Journal, 37(3), 233–246.CrossRefGoogle Scholar
  16. Hager, W. H., Sinniger, R., & Regamey, J.-M. (1984). Reservoir storage equation experimentally verified. Water Power and Dam Construction, 36(11), 44–48.Google Scholar
  17. Henderson, F. M. (1966). Open channel flow. New York: MacMillan.Google Scholar
  18. Hicks, F. E., & Steffler, P. M. (1990). Finite element modelling of open channel flow. Water Resources Engineering Report 90-6. Canada: University of Alberta.Google Scholar
  19. Jain, S. C. (2001). Open channel flow. New York: Wiley.Google Scholar
  20. Katopodes, N. D. (2019). Free surface flow: Computational methods. Oxford, UK: Butterworth-Heinemann.Google Scholar
  21. Khan, A. A., & Lai, W. (2014). Modeling shallow water flows using the discontinuous Galerkin method. New York: CRC Press, Taylor and Francis.CrossRefGoogle Scholar
  22. Lai, C. (1986). Numerical modelling of unsteady open-channel flow. Advances in Hydroscience, 14, 161–333.CrossRefGoogle Scholar
  23. LeVeque, R. J. (2002). Finite volume methods for hyperbolic problems. New York: Cambridge University Press.CrossRefGoogle Scholar
  24. Lighthill, M. J., & Whitham, G. B. (1955). On kinematic waves: Flood movement in long rivers. Proceedings Royal Society London, A, 229, 281–345.Google Scholar
  25. Liggett, J. A. (1994). Fluid mechanics. New York: McGraw-Hill.Google Scholar
  26. Macdonald, I. (1995). Analysis and computation of steady open channel flow (Ph.D. thesis). University of Reading, UK.Google Scholar
  27. Montes, J. S. (1998). Hydraulics of open channel flow. Reston, VA: ASCE.Google Scholar
  28. Montes, J. S., & Chanson, H. (1998). Characteristics of undular hydraulic jumps: Results and calculations. Journal of Hydraulic Engineering, 124(2), 192–205.CrossRefGoogle Scholar
  29. Peregine, D. H. (1966). Calculations of the development of an undular bore. Journal of Fluid Mechanics, 25, 321–330.CrossRefGoogle Scholar
  30. Roache, P. J. (1972). Computational fluid dynamics. Albuquerque: Hermosa publishers.zbMATHGoogle Scholar
  31. Stoker, J. J. (1957). Water waves: The mathematical theory with applications. New York: Interscience publishers.zbMATHGoogle Scholar
  32. Sturm, T. W. (2001). Open channel hydraulics. New York: McGraw-Hill.Google Scholar
  33. Toro, E. F. (2001). Shock-capturing methods for free-surface shallow flows. Singapore: Wiley.zbMATHGoogle Scholar
  34. Toro, E. F. (2009). Riemann solvers and numerical methods for fluid dynamics. London: Springer.CrossRefGoogle Scholar
  35. White, F. M. (2009). Fluid mechanics. New York: McGraw-Hill.Google Scholar
  36. Wu, W. (2008). Computational river dynamics. London, U.K.: Taylor & Francis.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of CórdobaCórdobaSpain
  2. 2.VAW, ETH ZürichZürichSwitzerland

Personalised recommendations