Advertisement

Numerical Modeling of Non-hydrostatic Free Surface Flows

  • Oscar Castro-OrgazEmail author
  • Willi H. Hager
Chapter

Abstract

The shallow water equations (SWE) are a dispersionless system of hyperbolic PDEs obtained by assuming that the vertical flow acceleration is negligible. Under this assumption, the vertical momentum balance is reduced to the hydrostatic pressure law (Toro 2001; Castro-Orgaz and Hager 2017).

References

  1. Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables (10th ed.). New York: Wiley.zbMATHGoogle Scholar
  2. Barthelemy, E. (2004). Nonlinear shallow water theories for coastal waters. Surveys In Geophysics, 25(3), 315–337.CrossRefGoogle Scholar
  3. Benjamin, T. B., & Lighthill, M. J. (1954). On cnoidal waves and bores. Proceedings of the Royal Society London, A, 224, 448–460.zbMATHCrossRefGoogle Scholar
  4. Blau, E. (1963). Der Abfluss und die hydraulische Energieverteilung über einer parabelförmigen Wehrschwelle [Distributions of discharge and energy over a parabolic-shaped weir]. Mitteilungen der Forschungsanstalt für Schiffahrt, Wasser- und Grundbau, Berlin, Heft 7, 5–72 (in German).Google Scholar
  5. Bonneton, P., Barthelemy, E., Chazel, F., Cienfuegos, R., Lannes, D., Marche, F., et al. (2011). Recent advances in Serre-Green-Naghdi modelling for wave transformation, breaking and runup processes. European Journal of Mechanics B/Fluids, 30(6), 589–597.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Boussinesq, J. (1877). Essai sur la théorie des eaux courantes [Memoir on the theory of flowing water]. Mémoires présentés par divers savants à l’Académie des Sciences, Paris 23, 1–660; 24, 1-60 (in French).Google Scholar
  7. Cantero-Chinchilla, F. N., Castro-Orgaz, O., Dey, S., & Ayuso, J. L. (2016). Nonhydrostatic dam break flows I: Physical equations and numerical schemes. Journal of Hydraulic Engineering, 142(12), 04016068.CrossRefGoogle Scholar
  8. Cantero-Chinchilla, F. N., Castro-Orgaz, O., & Khan, A. A. (2018). Depth-integrated nonhydrostatic free-surface flow modelling using weighted-averaged equations. International Journal for Numerical Methods in Fluids, 87(1), 27–50.MathSciNetCrossRefGoogle Scholar
  9. Castro-Orgaz, O., & Cantero-Chinchilla, F. N. (2019). Non-linear shallow water flow over topography with depth-averaged potential equation. Environmental Fluid Mechanics, in Press.Google Scholar
  10. Castro-Orgaz, O., & Chanson, H. (2016). Closure to Minimum specific energy and transcritical flow in unsteady open channel flow. Journal of Irrigation and Drainage Engineering, 142(10), 07016015.CrossRefGoogle Scholar
  11. Castro-Orgaz, O., & Hager, W. H. (2009). Curved streamline transitional flow from mild to steep slopes. Journal of Hydraulic Research, 47(5), 574–584.CrossRefGoogle Scholar
  12. Castro-Orgaz, O., & Hager, W. H. (2013). Velocity profile approximations for two-dimensional potential channel flow. Journal of Hydraulic Research, 51(6), 645–655.CrossRefGoogle Scholar
  13. Castro-Orgaz, O., & Hager, W. H. (2014). 1D modelling of curvilinear free surface flow: Generalized Matthew theory. Journal of Hydraulic Research, 52(1), 14–23.CrossRefGoogle Scholar
  14. Castro-Orgaz, O., & Hager, W. H. (2017). Non-hydrostatic free surface flows. Advances in Geophysical and Environmental Mechanics and Mathematics. 696 p. Berlin: Springer.  https://doi.org/10.1007/978-3-319-47971-2zbMATHCrossRefGoogle Scholar
  15. Castro-Orgaz, O., Hutter, K., Giraldez, J. V., & Hager, W. H. (2015). Non-hydrostatic granular flow over 3D terrain: New Boussinesq-type gravity waves? Journal of Geophysical Research: Earth Surface, 120(1), 1–28.Google Scholar
  16. Chanson, H. (2004). The hydraulics of open channel flows: An introduction. Oxford, UK: Butterworth-Heinemann.Google Scholar
  17. Cienfuegos, R., Barthélemy, E., & Bonneton, P. (2006). A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part I: Model development and analysis. International Journal for Numerical Methods in Fluids, 51(11), 1217–1253.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Dias, F., & Milewski, P. (2010). On the fully non-linear shallow-water generalized Serre equations. Physics Letters A, 374(8), 1049–1053.zbMATHCrossRefGoogle Scholar
  19. Erduran, K. S., Ilic, S., & Kutija, V. (2005). Hybrid finite-volume finite-difference scheme for the solution of Boussinesq equations. International Journal for Numerical Methods in Fluids, 49(11), 1213–1232.MathSciNetzbMATHCrossRefGoogle Scholar
  20. Fenton, J. D. (1996). Channel flow over curved boundaries and a new hydraulic theory. Proceeding of 10th IAHR APD Congress, Langkawi (pp. 266–273). Malaysia.Google Scholar
  21. Fornberg, B. (1988). Generation of finite difference formulas on arbitrarily spaced grids. Mathematics of Computation, 51(184), 699–706.MathSciNetzbMATHCrossRefGoogle Scholar
  22. Gottlieb, S., Shu, C.-W., & Tadmor, E. (2001). Strong stability-preserving high-order time discretization methods. SIAM Review, 43(1), 89–112.MathSciNetzbMATHCrossRefGoogle Scholar
  23. Green, A. E., & Naghdi, P. M. (1976a). Directed fluid sheets. Proceedings of the Royal Society. London, A, 347, 447–473.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Green, A. E., & Naghdi, P. M. (1976b). A derivation of equations for wave propagation in water of variable depth. Journal of Fluid Mechanics, 78, 237–246.zbMATHCrossRefGoogle Scholar
  25. Hager, W. H. (1985). Critical flow condition in open channel hydraulics. Acta Mechanica, 54(3–4), 157–179.CrossRefGoogle Scholar
  26. Hager, W. H., & Hutter, K. (1984a). Approximate treatment of plane channel flow. Acta Mechanica, 51(3–4), 31–48.zbMATHCrossRefGoogle Scholar
  27. Hager, W. H., & Hutter, K. (1984b). On pseudo-uniform flow in open channel hydraulics. Acta Mechanica, 53(3–4), 183–200.CrossRefGoogle Scholar
  28. Hasumi, M. (1931). Untersuchungen über die Verteilung der hydrostatischen Drücke an Wehrkronen und -Rücken von Überfallwehren infolge des abstürzenden Wassers [Studies on the distribution of hydrostatic pressure distributions at overflows due to water flow]. Journal Department of Agriculture, Kyushu Imperial University 3(4), 1–97 (in German).Google Scholar
  29. Henderson, F. M. (1966). Open channel flow. New York: MacMillan.Google Scholar
  30. Hoffman, J. D. (2001). Numerical methods for engineers and scientists (2nd ed.). New York: Marcel Dekker.zbMATHGoogle Scholar
  31. Hosoda, T., & Tada, A. (1994). Free surface profile analysis on open channel flow by means of 1-D basic equations with effect of vertical acceleration. JSCE Annual Journal of Hydraulic Engineering, 38, 457–462.CrossRefGoogle Scholar
  32. Hutter, K., & Castro-Orgaz, O. (2016). Non-hydrostatic free surface flows: Saint Venant versus Boussinesq depth integrated dynamic equations for river and granular flows. Continuous Media with Microstructure (Vol. 2, Chapter 17). Heidelberg: Springer, Berlin.Google Scholar
  33. Jaeger, C. (1956). Engineering fluid mechanics. Edinburgh: Blackie and Son.Google Scholar
  34. Khan, A. A., & Steffler, P. M. (1996a). Vertically averaged and moment equations model for flow over curved beds. Journal of Hydraulic Engineering, 122(1), 3–9.CrossRefGoogle Scholar
  35. Khan, A. A., & Steffler, P. M. (1996b). Modelling overfalls using vertically averaged and moment equations. Journal of Hydraulic Engineering, 122(7), 397–402.CrossRefGoogle Scholar
  36. Lesleighter, E., McPherson, B., Riddette, K., & Williams, J. (2008). Modelling procedures used for the spillway upgrade for Lake Manchester Dam. In Proceeding of 2008 ANCOLD Conference, Australian National Committe on Large Dams, Gold Coast.Google Scholar
  37. LeVeque, R. J. (2002). Finite volume methods for hyperbolic problems. New York: Cambridge Univ. Press.Google Scholar
  38. Marchi, E. (1992). The nappe profile of a free overfall. Rendiconti Lincei, Matematica e Applicazioni, Serie 9, 3(2), 131–140.Google Scholar
  39. Marchi, E. (1993). On the free overfall. Journal of Hydraulic Research 31(6), 777–790; 32(5), 794–796.CrossRefGoogle Scholar
  40. Matthew, G. D. (1991). Higher order one-dimensional equations of potential flow in open channels. Proc. ICE, 91(3), 187–201.Google Scholar
  41. Mignot, E., & Cienfuegos, R. (2009). On the application of a Boussinesq model to river flows including shocks. Coastal Engineering, 56(1), 23–31.CrossRefGoogle Scholar
  42. Mohapatra, P. K., & Chaudhry, M. H. (2004). Numerical solution of Boussinesq equations to simulate dam-break flows. Journal of Hydraulic Engineering, 130(2), 156–159.CrossRefGoogle Scholar
  43. Montecinos, G. I., López-Rios, J. C., Lecaros, R., Ortega, J. H., & Toro, E. F. (2016). An ADER-type scheme for a class of equations arising from the water-wave theory. Computers and Fluids, 132, 76–93.MathSciNetzbMATHCrossRefGoogle Scholar
  44. Montes, J. S. (1994). Potential flow solution to the 2D transition from mild to steep slope. Journal of Hydraulic Engineering, 120(5), 601–621.CrossRefGoogle Scholar
  45. Montes, J. S. (1998). Hydraulics of open channel flow. Reston VA: ASCE Press.Google Scholar
  46. Nadiga, B. T., Margolin, L. G., & Smolarkiewicz, P. K. (1996). Different approximations of shallow fluid flow over an obstacle. Physics of Fluids, 8(8), 2066–2077.zbMATHCrossRefGoogle Scholar
  47. Naghdi, P. M. (1979). Fluid jets and fluid sheets: A direct formulation. In Proceedings of 12th Symposium Naval Hydrodynamics (pp. 505–515). Washington D.C.: National Academy of Sciences.Google Scholar
  48. Naghdi, P. M., & Vongsarnpigoon, L. (1986). The downstream flow beyond an obstacle. Journal of Fluid Mechanics, 162, 223–236.zbMATHCrossRefGoogle Scholar
  49. Nwogu, O. (1993). Alternative form of Boussinesq equations for nearshore wave propagation. Journal of Waterway Port Coastal and Ocean Engineering, 119(6), 618–638.CrossRefGoogle Scholar
  50. Onda, S., & Hosoda, T. (2004). Numerical simulation of the development process of dunes and flow resistance. In Proceedings River Flow 2004 (pp. 245–252). London: T&F.Google Scholar
  51. Ozmen-Cagatay, H., & Kocaman, S. (2010). Dam-break flows during initial stage using SWE and RANS approaches. Journal of Hydraulic Research, 48(5), 603–611.CrossRefGoogle Scholar
  52. Peregrine, D. H. (1966). Calculations of the development of an undular bore. Journal of Fluid Mechanics, 25(2), 321–330.CrossRefGoogle Scholar
  53. Peregrine, D. H. (1967). Long waves on a beach. Journal of Fluid Mechanics, 27(5), 815–827.zbMATHCrossRefGoogle Scholar
  54. Peregrine, D. H. (1972). Equations for water waves and the approximations behind them. In R. E. Meyer, (ed.), Waves on beaches and resulting sediment transport (pp. 95–122). San Diego, CA: Academic PressCrossRefGoogle Scholar
  55. Popinet, S. (2015). A quadtree-adaptative multigrid solver for the Serre-Green-Naghdi equations. Journal of Computational Physics, 302, 336–358.MathSciNetzbMATHCrossRefGoogle Scholar
  56. Rouse, H. (1938). Fluid mechanics for hydraulic engineers. New York: McGraw-Hill.Google Scholar
  57. Rouse, H. (1961). Fluid motion in a gravitational field, IIHR movies. Iowa: Univ.Google Scholar
  58. Seabra-Santos, F. J., Renouard, D. P., & Temperville, A. M. (1987). Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. Journal of Fluid Mechanics, 176, 117–134.CrossRefGoogle Scholar
  59. Serre, F. (1953). Contribution à l’étude des écoulements permanents et variables dans les canaux [Contribution to the study of steady and unsteady channel flows]. La Houille Blanche 8(6–7), 374–388; 8(12), 830–887 (in French).Google Scholar
  60. Sivakumaran, N. S. (1981). Shallow flow over curved beds (Ph.D. thesis) Asian Institute of Technology, Bangkok, Thailand.Google Scholar
  61. Sivakumaran, N. S., Tingsanchali, T., & Hosking, R. J. (1983). Steady shallow flow over curved beds. Journal of Fluid Mechanics, 128, 469–487.CrossRefGoogle Scholar
  62. Soares-Frazão, S., & Guinot, V. (2008). A second-order semi-implicit hybrid scheme for one-dimensional Boussinesq-type waves in rectangular channels. International Journal for Numerical Methods in Fluids, 58(3), 237–261.MathSciNetzbMATHCrossRefGoogle Scholar
  63. Soares-Frazão, S., & Zech, Y. (2002). Undular bores and secondary waves: Experiments and hybrid finite-volume modelling. Journal of Hydraulic Research, 40(1), 33–43.CrossRefGoogle Scholar
  64. Steffler, P. M., & Jin, Y. C. (1993). Depth-averaged and moment equations for moderately shallow free surface flow. Journal of Hydraulic Research, 31(1), 5–17.CrossRefGoogle Scholar
  65. Su, C. H., & Gardner, C. S. (1969). KDV equation and generalizations. Part III. Derivation of Korteweg-de Vries equation and Burgers equation. Journal of Mathematical Physics, 10(3), 536–539.MathSciNetzbMATHCrossRefGoogle Scholar
  66. Thom, A., & Apelt, C. (1961). Field computations in engineering and physics. London: Van Nostrand.zbMATHGoogle Scholar
  67. Toro, E. F. (2001). Shock-capturing methods for free-surface shallow flows. Singapore: Wiley.zbMATHGoogle Scholar
  68. Toro, E. F. (2009). Riemann solvers and numerical methods for fluid dynamics: A practical introduction. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  69. Vallentine, H. R. (1969). Applied hydrodynamics. London: Butterworths.Google Scholar
  70. Van Dyke, M. (1975). Perturbation methods in fluid mechanics. Stanford, CA: The Parabolic Press.zbMATHGoogle Scholar
  71. Wei, G., Kirby, J. T., Grilli, S. T., & Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves 1: Highly nonlinear unsteady waves. Journal of Fluid Mechanics, 294, 71–92.MathSciNetzbMATHCrossRefGoogle Scholar
  72. Zerihun, Y. T. (2004). A one-dimensional Boussinesq-type momentum model for steady rapidly varied open channel flows (Ph.D. thesis). Melbourne University, Australia.Google Scholar
  73. Zerihun, Y. T., & Fenton, J. D. (2006). One-dimensional simulation model for steady transcritical free surface flows at short length transitions. Advances in Water Resources, 29(11), 1598–1607.CrossRefGoogle Scholar
  74. Zhou, J. G., Causon, D. M., Mingham, C. G., & Ingram, D. M. (2001). The surface gradient method for the treatment of source terms in the shallow-water equations. Journal of Computational Physics, 168(1), 1–25.MathSciNetzbMATHCrossRefGoogle Scholar
  75. Zhu, D. Z., & Lawrence, G. A. (1998). Non-hydrostatic effects in layered shallow water flows. Journal of Fluid Mechanics, 355, 1–16.MathSciNetzbMATHCrossRefGoogle Scholar
  76. Zhu, D. Z. (1996). Exchange flow through a channel with an underwater sill (Ph.D thesis). The University of British Columbia, Vancouver, Canada.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of CórdobaCórdobaSpain
  2. 2.VAW, ETH ZürichZürichSwitzerland

Personalised recommendations