Sediment Transport and Movable Beds

  • Oscar Castro-OrgazEmail author
  • Willi H. Hager


Transportation of sediment is an important and frequent phenomenon in rivers. Sediment is mobilized as bed-load with particles sliding, saltating, and rolling over the river bed, or as a suspended-load, where particles move with the turbulent water flow away from the bed.


  1. Cantero-Chinchilla, F., Castro-Orgaz, O., Dey, S., & Ayuso, J. L. (2016). Nonhydrostatic dam break flows II: One-dimensional depth-averaged modelling for movable bed flows. Journal of Hydraulic Engineering, 142(12), 04016069.CrossRefGoogle Scholar
  2. Cantero-Chinchilla, F. N., Castro-Orgaz, O., Schmocker, L., Hager, W. H., & Dey, S. (2018). Depth-averaged modelling of granular dike overtopping. Journal of Hydraulic Research, 56(4), 537–550.CrossRefGoogle Scholar
  3. Cantero-Chinchilla, F. N., Castro-Orgaz, O., Dey, S. (2019). Prediction of overtopping dike failure: A sediment transport and dynamic granular bed deformation model. Journal of Hydraulic Engineering, 145(6), 04019021.CrossRefGoogle Scholar
  4. Cao, Z., Pender, G., Wallis, S., & Carling, P. (2004). Computational dam-break hydraulics over erodible sediment bed. Journal of Hydraulic Engineering, 130(7), 689–703.CrossRefGoogle Scholar
  5. Capart, H., & Young, D. L. (1998). Formation of a jump by the dam-break wave over a granular bed. Journal of Fluid Mechanics, 372, 165–187.CrossRefGoogle Scholar
  6. Capart, H., Young, D. L. (2002). Two-layer shallow water computations of torrential flows. In: Proceedings of River Flow, vol. 2, (pp. 1003–1012). Lisse, The Netherlands: Balkema.Google Scholar
  7. Dey, S. (2014). Fluvial hydrodynamics: Hydrodynamic and sediment transport phenomena. Berlin: Springer.CrossRefGoogle Scholar
  8. Fraccarollo, L., & Capart, H. (2002). Riemann wave description of erosional dam break flows. Journal of Fluid Mechanics, 461, 183–228.MathSciNetCrossRefGoogle Scholar
  9. Greco, M., Iervolino, M., Leopardi, A., & Vacca, A. (2012). A two-phase model for fast geomorphic shallow flows. International Journal of Sediment Research, 27(4), 409–425.CrossRefGoogle Scholar
  10. Pontillo, M., Schmocker, L., Greco, M., & Hager, W. H. (2010). 1D numerical evaluation of dike erosion due to overtopping. Journal of Hydraulic Research, 48(5), 573–582.CrossRefGoogle Scholar
  11. Schmocker, L. (2011). Hydraulics of dike breaching. Ph.D. thesis. Zürich, Switzerland: Swiss Federal Institute of Technology.Google Scholar
  12. Toro, E. F. (2001). Shock-capturing methods for free-surface shallow flows. New York: Wiley.zbMATHGoogle Scholar
  13. Wu, W. (2008). Computational river dynamics. London, U.K.: Taylor and Francis.Google Scholar
  14. Wu, W., & Wang, S. S. Y. (1999). Movable bed roughness in alluvial rivers. Journal of Hydraulic Engineering, 125(12), 1309–1312.CrossRefGoogle Scholar
  15. Wu, W., & Wang, S. S. Y. (2007). One-dimensional modeling of dam-break flow over movable beds. Journal of Hydraulic Engineering, 133(1), 48–58.Google Scholar
  16. Wu, W., & Wang, S. S. Y. (2008). One-dimensional explicit finite-volume model for sediment transport. Journal of Hydraulic Research, 46(1), 87–98.MathSciNetCrossRefGoogle Scholar
  17. Wu, W., Wang, S. S. Y., & Jia, Y. (2000). Nonuniform sediment transport in alluvial rivers. Journal of Hydraulic Research, 38(6), 427–434.CrossRefGoogle Scholar
  18. Wu, W., Vieira, D. A., & Wang, S. S. Y. (2004). One-dimensional numerical model for nonuniform sediment transport under unsteady flows in channel networks. Journal of Hydraulic Engineering, 130(9), 914–923.CrossRefGoogle Scholar
  19. Ying, X., Khan, A. A., & Wang, S. S. Y. (2004). Upwind conservative scheme for the Saint Venant equations. Journal of Hydraulic Engineering, 130(10), 977–987.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of CórdobaCórdobaSpain
  2. 2.VAW, ETH ZürichZürichSwitzerland

Personalised recommendations