Exemplary Applications: Novel Exploration Methods

  • Willi Freeden
  • Clemens Heine
  • M. Zuhair Nashed
Part of the Lecture Notes in Geosystems Mathematics and Computing book series (LNGMC)


Next we present two novel exploration methods, thereby using the structure of a methodological circuit (as presented in Sect.  2.6), respectively. We start with inverse gravimetry, which becomes an increasing importance, e.g., in geothermal research. Then we go over to a standard technique in geoexploration, namely reflection seismics, for which a “mollifier inversion procedure” similar to the approach in gravimetry will be developed.


  1. 1.
    Achenbach, J.D.: Wave Propagation in Elastic Solids. North Holland Publishing Company, New York (1973)zbMATHGoogle Scholar
  2. 3.
    Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)MathSciNetCrossRefGoogle Scholar
  3. 7.
    Baysal, E., Kosloff, D.D., Sherwood, J.W.C.: A two-way nonreflecting wave equation. Geophysics 49, 132–141 (1984)CrossRefGoogle Scholar
  4. 8.
    Beylkin, G., Monzón, L.: On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 19, 17–48 (2005)MathSciNetCrossRefGoogle Scholar
  5. 9.
    Beylkin, G., Monzón, L.: Approximation of functions by exponential sums revisited. Appl. Comput. Harmon. Anal. 28, 131–149 (2010)MathSciNetCrossRefGoogle Scholar
  6. 10.
    Blick, C., Freeden, W., Nutz, H.: Gravimetry and Exploration. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 687–752. Birkhäuser/Springer, Basel/New-York/Heidelberg (2018)CrossRefGoogle Scholar
  7. 11.
    Burschäpers, H.C.: Local modeling of gravitational data. Master Thesis, University of Kaiserslautern, Mathematics Department, Geomathematics Group (2013)Google Scholar
  8. 12.
    Cheng, H., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155, 468–498 (1999)MathSciNetCrossRefGoogle Scholar
  9. 13.
    Claerbout, J.: Basic Earth Imaging. Standford University, Standford (2009)Google Scholar
  10. 16.
    Davis, P.J.: Interpolation and Approximation. Blaisdell, New York (1963)zbMATHGoogle Scholar
  11. 20.
    Evans, L.D.: Partial Differential Equation, Third Printing. American Mathematical Society, Providence (2002)Google Scholar
  12. 27.
    Freeden, W.: Geomathematics: Its Role, Its Aim, and Its Potential. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn, pp. 3–78. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  13. 29.
    Freeden, W., Blick, C.: Signal decorrelation by means of multiscale methods. World Min. 65, 1–15 (2013)Google Scholar
  14. 30.
    Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. Chapman and Hall/CRC Press, Boca Raton/London (2013)zbMATHGoogle Scholar
  15. 39.
    Freeden, W., Nashed, M.Z.: Inverse gravimetry: Background material and multiscale mollifier approaches. GEM Int. J. Geomath. 9, 199–264 (2018)MathSciNetCrossRefGoogle Scholar
  16. 40.
    Freeden, W., Nashed, M.Z.: Ill-Posed Problems: Operator Methodologies of Resolution and Regularization. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 201–314. Springer, Basel (2018)CrossRefGoogle Scholar
  17. 41.
    Freeden, W., Nashed, M.Z.: Gravimetry As an Ill-Posed Problem in Mathematical Geodesy. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 641–686. Springer, Basel (2018)CrossRefGoogle Scholar
  18. 42.
    Freeden, W., Nutz, H.: Mathematische Methoden. In: Bauer, M., Freeden, W., Jacobi, H., Neu, T. (Herausgeber) Handbuch Tiefe Geothermie. Springer, Heidelberg (2014)Google Scholar
  19. 43.
    Freeden, W., Nutz, H.: Mathematik als Schlüsseltechnologie zum Verständnis des Systems “Tiefe Geothermie”. Jahresber. Deutsch. Math. Vereinigung (DMV) 117, 45–84 (2015)zbMATHGoogle Scholar
  20. 45.
    Freeden, W., Sansó, F.: Geodesy and Mathematics: Interactions, Acquisitions, and Open Problems. In: International Association of Geodesy Symposia (IAGS), IX Hotine-Marussi Symposium Rome. Springer, Heidelberg (submitted, 2019). Preprint (2019)Google Scholar
  21. 46.
    Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences – A Scalar, Vectorial, and Tensorial Setup. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  22. 47.
    Freeden, W., Schreiner, M.: Mathematical Geodesy: Its Role, Its Potential and Its Perspective. In: Freeden, W., Rummel, R. (eds.) Handbuch der Geodäsie. Springer Reference Naturwissenschaften. Springer, Cham (2019).
  23. 48.
    Freeden, W., Witte, B.: A combined (spline-) interpolation and smoothing method for the determination of the gravitational potential from heterogeneous data. Bull. Géod. 56, 53–62 (1982)MathSciNetCrossRefGoogle Scholar
  24. 52.
    Freeden, W., Sonar, T., Witte, B.: Gauss as Scientific Mediator Between Mathematics and Geodesy from the Past to the Present. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy, pp. 1–164. Geosystems Mathematics. Springer, Basel (2018)CrossRefGoogle Scholar
  25. 54.
    Grafarend, E.W.: Six Lectures on Geodesy and Global Geodynamics. In: Moritz, H., Sünkel, H. (eds.) Proceedings of the Third International Summer School in the Mountains, pp. 531–685 (1982)Google Scholar
  26. 56.
    Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer. 6, 229–269 (1997)MathSciNetCrossRefGoogle Scholar
  27. 57.
    Groten, E.: Geodesy and the Earth’s Gravity Field I + II. Dümmler, Bonn (1979)Google Scholar
  28. 58.
    Gutting, M.: Fast multipole methods for oblique derivative problems. Ph.D. thesis, University of Kaiserslautern, Mathematics Department, Geomathematics Group (2007)Google Scholar
  29. 60.
    Gutting, M.: Fast Spherical/Harmonic Spline Modeling. In: Freeden, W., Nashed, Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 3, 2nd edn., pp. 2711–2746. Springer, New York (2015)CrossRefGoogle Scholar
  30. 61.
    Hackbusch, W.: Entwicklungen nach Exponentialsummen. Technical Report. Max-Planck-Institut für Mahematik in den Naturwissenschaften, Leipzig (2010)Google Scholar
  31. 62.
    Hackbusch, W., Khoromoskij, B.N., Klaus, A.: Approximation of functions by exponential sums based on the Newton-type optimisation. Technical Report, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig (2005)Google Scholar
  32. 63.
    Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique. Princet. Univ. Bull. 13, 49–52 (1902)Google Scholar
  33. 64.
    Heiskanen, W.A., Moritz, H.: Physical Geodesy. Freeman, San Francisco (1967)Google Scholar
  34. 65.
    Helmert, F.: Die Mathematischen und Physikalischen Theorien der Höheren Geodäsie, I, II. B.G. Teubner, Leipzig (1884)Google Scholar
  35. 66.
    Hille, E.: Introduction to the general theory of reproducing kernels. Rocky Mountain J. Math. 2, 321–368 (1972)MathSciNetCrossRefGoogle Scholar
  36. 67.
    Hofmann-Wellenhof, B., Moritz, H.: Physical Geodesy. Springer, Wien (2005)Google Scholar
  37. 68.
    Ilyasov, M.: A tree algorithm for Helmholtz potential wavelets on non-smooth surfaces: theoretical background and application to seismic data processing. Ph.D. thesis, Geomathematics Group, University of Kaiserslautern (2011)Google Scholar
  38. 69.
    Jakobs, F., Meyer, H.: Geophysik – Signale aus der Erde. Teubner, Leipzig (1992)CrossRefGoogle Scholar
  39. 73.
    Listing, J.B.: Über unsere jetzige Kenntnis der Gestalt und Größe der Erde. Dietrichsche Verlagsbuchhandlung, Göttingen (1873)Google Scholar
  40. 76.
    Marks, D.L.: A family of approximations spanning the Born and Rytov scattering series. Opt. Express 14, 8837–8848 (2013)CrossRefGoogle Scholar
  41. 77.
    Martin, G.S., Marfurt, K.J., Larsen, S.: Marmousi-2: An updated model for the investigation of AVO in structurally complex areas. In: Proceedings, SEG Annual Meeting, Salt Lake City (2002)Google Scholar
  42. 78.
    Martin, G.S., Wiley, R., Marfurt, K.J.: Marmousi2: An elastic upgrade for marmousi. Lead. Edge 25, 156–166 (2006)CrossRefGoogle Scholar
  43. 79.
    Marussi, A.: Intrinsic Geodesy. Springer, Berlin (1985)CrossRefGoogle Scholar
  44. 81.
    Meissl, P.A.: Hilbert spaces and their applications to geodetic least squares problems. Boll. Geod. Sci. Aff. 1, 181–210 (1976)MathSciNetzbMATHGoogle Scholar
  45. 82.
    Michel, V.: A multiscale method for the gravimetry problem: theoretical and numerical aspects of harmonic and anharmonic modelling. Ph.D. thesis, University of Kaiserslautern, Mathematics Department, Geomathematics Group, Shaker, Aachen (1999)Google Scholar
  46. 83.
    Michel, V.: Lectures on Constructive Approximation. Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013)CrossRefGoogle Scholar
  47. 84.
    Michel, V., Fokas, A.S.: A unified approach to various techniques for the non-uniqueness of the inverse gravimetric problem and wavelet-based methods. Inverse Prob. 24 (2008). MathSciNetCrossRefGoogle Scholar
  48. 85.
    Möhringer, S.: Decorrelation of gravimetric data. Ph.D. thesis, University of Kaiserslautern, Mathematics Department, Geomathematics Group (2014)Google Scholar
  49. 86.
    Moritz, H.: Advanced Physical Geodesy. Herbert Wichmann Verlag/Abacus Press, Karlsruhe/Tunbridge (1980)Google Scholar
  50. 88.
    Moritz, H.: The Figure of the Earth. Theoretical Geodesy of the Earth’s Interior. Wichmann Verlag, Karlsruhe (1990)Google Scholar
  51. 90.
    Müller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer, Berlin (1969)CrossRefGoogle Scholar
  52. 100.
    Nolet, G.: Seismic Tomography: Imaging the Interior of the Earth and Sun. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  53. 103.
    Popov, M.M., Semtchenok, N.M., Popov, P. M., Verdel, A.R.: Gaussian beam migration of multi-valued zero-offset data. In: Proceedings, International Conference, Days on Diffraction, St Petersburg, Russia, pp. 225–234 (2006)Google Scholar
  54. 104.
    Popov, M.M., Semtchenok, N.M., Popov, P.M., Verdel, A.R.L.: Reverse time migration with gaussian beams and velocity analysis applications. In: Extended Abstracts, 70th EAGE Conference & Exhibitions, Rome, F048 (2008)Google Scholar
  55. 106.
    Rummel, R.: Geodesy. In: Encyclopedia of Earth System Science, vol. 2, pp. 253–262. Academic, New York (1992)Google Scholar
  56. 109.
    Saitoh, S.: Theory of Reproducing Kernels and Its Applications. Longman, New York (1988)zbMATHGoogle Scholar
  57. 111.
    Skudrzyk, E.: The Foundations of Acoustics. Springer, Heidelberg (1972)zbMATHGoogle Scholar
  58. 112.
    Snieder, R.: The Perturbation Method in Elastic Wave Scattering and Inverse Scattering in Pure and Applied Science. General Theory of Elastic Waves, pp. 528–542. Academic, San Diego (2002)CrossRefGoogle Scholar
  59. 116.
    Symes, W.W.: The Rice Inversion Project, Department of Computational and Applied Mathematics, Rice University, Houston, Texas, USA. Accessed 12 Sept 2016
  60. 117.
    Torge, W.: Gravimetry. de Gruyter, Berlin (1989)zbMATHGoogle Scholar
  61. 118.
    Torge, W.: Geodesy. de Gruyter, Berlin (1991)CrossRefGoogle Scholar
  62. 121.
    Weck, N.: Zwei inverse Probleme in der Potentialtheorie. Mitt. Inst. Theor. Geodäsie, Universität Bonn 4, 27–36 (1972)Google Scholar
  63. 123.
    Yilmas, O.: Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data. Society of Exploration Geophysicists, Tulsa (1987)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Willi Freeden
    • 1
  • Clemens Heine
    • 2
  • M. Zuhair Nashed
    • 3
  1. 1.Mathematics DepartmentUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Executive EditorSpringer NatureHeidelbergGermany
  3. 3.Mathematics DepartmentUniversity of Central FloridaOrlandoUSA

Personalised recommendations