Advertisement

Other Assisted Hybrid Micromachining Processes

  • Sumit BhowmikEmail author
  • Divya Zindani
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

One or several types of energy is superimposed on the conventional micromachining process in assisted variant of hybrid micromachining process. Energy from sources like laser, magnetic field, ultrasonic vibration, etc., are superimposed resulting in improved micromachining processes. The present chapter outlines and discusses some of the major assisted micromachining processes such as vibration-assisted variant of hybrid micromachining, external electric field assisted micromachining, and carbon nanofiber assisted micromachining processes.

Keywords

Vibration-assisted micromachining External electric field assisted micromachining Carbon nanofibre-assisted micromachining 

References

  1. S. Amini, M. Soleimani, H. Paktinat, M. Lotfi, Effect of longitudinal—torsional vibration in ultrasonic-assisted drilling. Mater. Manuf. Processes 32(6), 616–622 (2017)CrossRefGoogle Scholar
  2. A.H. Ammouri, R.F. Hamade, BUEVA: a bi-directional ultrasonic elliptical vibration actuator for micromachining. Int. J. Adv. Manuf. Technol. 58(9–12), 991–1001 (2012)CrossRefGoogle Scholar
  3. B. Azarhoushang, J. Akbari, Ultrasonic-assisted drilling of Inconel 738-LC. Int. J. Mach. Tools Manuf. 47(7–8), 1027–1033 (2007)CrossRefGoogle Scholar
  4. D.E. Brehl, T.A. Dow, 3-D microstructure creation using elliptical vibration-assisted machining. ASPE Proc. Vibr. Assist. Mach. Technol. 21, 26 (2007)Google Scholar
  5. D.E. Brehl, T.A. Dow, Review of vibration-assisted machining. Precis. Eng. 32(3), 153–172 (2008)CrossRefGoogle Scholar
  6. B.C. Brocato, Micromachining using EVAM (Elliptical Vibration Assisted Machining) (2005)Google Scholar
  7. S.K. Chee, H. Suzuki, M. Okada, T. Yano, T. Higuchi, W.M. Lin, Precision polishing of micro mold by using piezoelectric actuator incorporated with mechanical amplitude magnified mechanism, in Advanced Materials Research, vol. 325 (Trans Tech Publications, 2011), pp. 470–475Google Scholar
  8. H. Chen, M. Cheng, Y. Li, D. Zhang, Development of integrated precision vibration-assisted micro-engraving system. Trans. Tianjin Univ. 17(4), 242 (2011)CrossRefGoogle Scholar
  9. W. Chen, X. Teng, L. Zheng, W. Xie, D. Huo, Burr reduction mechanism in vibration-assisted micro milling. Manuf. Lett. 16, 6–9 (2018)CrossRefGoogle Scholar
  10. G.L. Chern, Y.C. Chang, Using two-dimensional vibration cutting for micro-milling. Int. J. Mach. Tools Manuf. 46(6), 659–666 (2006)CrossRefGoogle Scholar
  11. G.L. Chern, H.J. Lee, Using workpiece vibration cutting for micro-drilling. Int. J. Adv. Manuf. Technol. 27(7–8), 688–692 (2006)CrossRefGoogle Scholar
  12. K. Egashira, K. Mizutani, T. Nagao, Ultrasonic vibration drilling of microholes in glass. CIRP Ann. Manuf. Technol. 51(1), 339–342 (2002)CrossRefGoogle Scholar
  13. T. Endo, T. Tsujimoto, K. Mitsui, Study of vibration-assisted micro-EDM—the effect of vibration on machining time and stability of discharge. Precis. Eng. 32(4), 269–277 (2008)CrossRefGoogle Scholar
  14. C.R. Friedrich, P.J. Coane, M.J. Vasile, Micromilling development and applications for microfabrication. Microelectron. Eng. 35(1–4), 367–372 (1997)CrossRefGoogle Scholar
  15. C. Gao, Z. Liu, A study of ultrasonically aided micro-electrical-discharge machining by the application of workpiece vibration. J. Mater. Process. Technol. 139(1–3), 226–228 (2003)CrossRefGoogle Scholar
  16. D. Ghiculescu, N.I. Marinescu, S. Nanu, D. Ghiculescu, G. Kakarelidis, FEM study of synchronization between pulses and tool oscillations at ultrasonic aided microelectrodischarge machining. Rev. Tehnol. Neconventionale 14(3), 19 (2010)Google Scholar
  17. B. Ghoshal, B. Bhattacharyya, Influence of vibration on micro-tool fabrication by electrochemical machining. Int. J. Mach. Tools Manuf. 64, 49–59 (2013)CrossRefGoogle Scholar
  18. B. Ghoshal, B. Bhattacharyya, Shape control in micro borehole generation by EMM with the assistance of vibration of tool. Precis. Eng. 38(1), 127–137 (2014)CrossRefGoogle Scholar
  19. B. Ghoshal, B. Bhattacharyya, Vibration assisted electrochemical micromachining of high aspect ratio micro features. Precis. Eng. 42, 231–241 (2015)CrossRefGoogle Scholar
  20. K.T. Hoang, S.H. Yang, A study on the effect of different vibration-assisted methods in micro-WEDM. J. Mater. Process. Technol. 213(9), 1616–1622 (2013)CrossRefGoogle Scholar
  21. A.W.J. Hsue, J.J. Wang, C.H. Chang, Milling tool of micro-EDM by ultrasonic assisted multi-axial wire electrical discharge grinding processes. in ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing (American Society of Mechanical Engineers, 2012), pp. 473-479Google Scholar
  22. H. Huang, H. Zhang, L. Zhou, H.Y. Zheng, Ultrasonic vibration assisted electro-discharge machining of microholes in Nitinol. J. Micromech. Microeng. 13(5), 693 (2003)CrossRefGoogle Scholar
  23. J.C. Hung, J.K. Lin, B.H. Yan, H.S. Liu, P.H. Ho, Using a helical micro-tool in micro-EDM combined with ultrasonic vibration for micro-hole machining. J. Micromech. Microeng. 16(12), 2705 (2006)CrossRefGoogle Scholar
  24. D. Huo, Micro-cutting: Fundamentals and Applications (Wiley, 2013)Google Scholar
  25. T. Ichikawa, W. Natsu, Realization of micro-EDM under ultra-small discharge energy by applying ultrasonic vibration to machining fluid. Proc. CIRP 6, 326–331 (2013)CrossRefGoogle Scholar
  26. M.P. Jahan, T. Saleh, M. Rahman, Y.S. Wong, Development, modeling, and experimental investigation of low frequency workpiece vibration-assisted micro-EDM of tungsten carbide. J. Manuf. Sci. Eng. 132(5), 054503 (2010a)CrossRefGoogle Scholar
  27. M.P. Jahan, M. Rahman, Y.S. Wong, L. Fuhua, On-machine fabrication of high-aspect-ratio micro-electrodes and application in vibration-assisted micro-electrodischarge drilling of tungsten carbide. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 224(5), 795–814 (2010b)CrossRefGoogle Scholar
  28. M.P. Jahan, T. Saleh, M. Rahman, Y.S. Wong, Study of micro-EDM of tungsten carbide with workpiece vibration, in Advanced Materials Research, vol. 264, (Trans Tech Publications, 2011), pp. 1056–1061Google Scholar
  29. M.P. Jahan, Y.S. Wong, M. Rahman, Evaluation of the effectiveness of low frequency workpiece vibration in deep-hole micro-EDM drilling of tungsten carbide. J. Manuf. Process. 14(3), 343–359 (2012)CrossRefGoogle Scholar
  30. S.U. Je, H.S. Lee, C.N. Chu, D.W. Kim, Micro EDM with ultrasonic work fluid vibration for deep hole machining. J. Kor. Soc. Precis. Eng. 22(7), 47–53 (2005)Google Scholar
  31. B. Kang, G.W. Kim, M. Yang, S.H. Cho, J.K. Park, A study on the effect of ultrasonic vibration in nanosecond laser machining. Opt. Lasers Eng. 50(12), 1817–1822 (2012)CrossRefGoogle Scholar
  32. G.D. Kim, B.G. Loh, Direct machining of micro patterns on nickel alloy and mold steel by vibration assisted cutting. Int. J. Precis. Eng. Manuf. 12(4), 583–588 (2011)CrossRefGoogle Scholar
  33. G.D. Kim, B.G. Loh, Cutting force variation with respect to tilt angle of trajectory in elliptical vibration V-grooving. Int. J. Precis. Eng. Manuf. 14(10), 1861–1864 (2013)CrossRefGoogle Scholar
  34. D.J. Kim, S.M. Yi, Y.S. Lee, C.N. Chu, Straight hole micro EDM with a cylindrical tool using a variable capacitance method accompanied by ultrasonic vibration. J. Micromech. Microeng. 16(5), 1092 (2006)CrossRefGoogle Scholar
  35. T. Koyano, M. Kunieda, Ultra-short pulse ECM using electrostatic induction feeding method. Proc. CIRP 6, 390–394 (2013)CrossRefGoogle Scholar
  36. B. Lauwers, Surface integrity in hybrid machining processes. Procedia Eng. 19, 241–251 (2011)CrossRefGoogle Scholar
  37. J.S. Lee, D.W. Lee, Y.H. Jung, W.S. Chung, A study on micro-grooving characteristics of planar lightwave circuit and glass using ultrasonic vibration cutting. J. Mater. Process. Technol. 130, 396–400 (2002)CrossRefGoogle Scholar
  38. K.M. Li, S.L. Wang, Effect of tool wear in ultrasonic vibration-assisted micro-milling. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 228(6), 847–855 (2014)CrossRefGoogle Scholar
  39. C. Li, F. Zhang, B. Meng, L. Liu, X. Rao, Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics. Ceram. Int. 43(3), 2981–2993 (2017)CrossRefGoogle Scholar
  40. H. Lian, Z. Guo, Z. Huang, Y. Tang, J. Song, Experimental research of Al6061 on ultrasonic vibration assisted micro-milling. Proc. CIRP 6, 561–564 (2013)CrossRefGoogle Scholar
  41. P.J. Liew, J. Yan, T. Kuriyagawa, Carbon nanofiber assisted micro electro discharge machining of reaction-bonded silicon carbide. J. Mater. Process. Technol. 213(7), 1076–1087 (2013)CrossRefGoogle Scholar
  42. M. Mahardika, G.S. Prihandana, T. Endo, T. Tsujimoto, N. Matsumoto, B. Arifvianto, K. Mitsui, The parameters evaluation and optimization of polycrystalline diamond micro-electrodischarge machining assisted by electrode tool vibration. Int. J. Adv. Manuf. Technol. 60(9–12), 985–993 (2012)CrossRefGoogle Scholar
  43. S. Mastud, M. Garg, R. Singh, J. Samuel, S. Joshi, Experimental characterization of vibration-assisted reverse micro electrical discharge machining (EDM) for surface texturing, in ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing (American Society of Mechanical Engineers), pp. 439–448Google Scholar
  44. T. Moriwaki, E. Shamoto, Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration. CIRP Ann. Manuf. Technol. 40(1), 559–562 (1991)CrossRefGoogle Scholar
  45. M.D. Nguyen, Y. San Wong, M. Rahman, Profile error compensation in high precision 3D micro-EDM milling. Precis. Eng. 37(2), 399–407 (2013)CrossRefGoogle Scholar
  46. H. Onikura, O. Ohnishi, Y. Take, A. Kobayashi, Fabrication of micro carbide tools by ultrasonic vibration grinding. CIRP Ann. Manuf. Technol. 49(1), 257–260 (2000)CrossRefGoogle Scholar
  47. H. Onikura, R. Inoue, K. Okuno, O. Ohnishi, Fabrication of electroplated micro grinding wheels and manufacturing of microstructures with ultrasonic vibration, in Key Engineering Materials, vol. 238 (Trans Tech Publications, 2003), pp. 9–14Google Scholar
  48. J.-K. Park, J.-W. Yoon, M.-C. Kang, S.-H. Cho, Surface effects of hybrid vibration-assisted femtosecond laser system for micro-hole drilling of copper substrate. Trans. Nonferrous Met. Soc. China 22, s801–s807 (2012a)CrossRefGoogle Scholar
  49. J.K. Park, J.W. Yoon, S.H. Cho, Vibration assisted femtosecond laser machining on metal. Opt. Lasers Eng. 50(6), 833–837 (2012b)CrossRefGoogle Scholar
  50. M. Rahman, A.S. Kumar, J.R.S. Prakash, Micro milling of pure copper. J. Mater. Process. Technol. 116(1), 39–43 (2001)CrossRefGoogle Scholar
  51. P. Rodrigues, J.E. Labarga, Tool deflection model for micro milling process. Int. J. Adv. Manuf. Technol. 72(5), 1–9 (2014)Google Scholar
  52. A. Ruszaj, M. Zybura, R. Żurek, G. Skrabalak, Some aspects of the electrochemical machining process supported by electrode ultrasonic vibrations optimization. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 217(10), 1365–1371 (2003)CrossRefGoogle Scholar
  53. E. Shamoto, N. Suzuki, T. Moriwaki, Y. Naoi, Development of ultrasonic elliptical vibration controller for elliptical vibration cutting. CIRP Ann. Manuf. Technol. 51(1), 327–330 (2002)CrossRefGoogle Scholar
  54. H.S. Shin, M.S. Park, B.H. Kim, C.N. Chu, Recent researches in micro electrical machining. Int. J. Precis. Eng. Manuf. 12(2), 371–380 (2011)CrossRefGoogle Scholar
  55. H. Suzuki, T. Moriwaki, T. Okino, Y. Ando, Development of ultrasonic vibration assisted polishing machine for micro aspheric die and mold. CIRP Ann. Manuf. Technol. 55(1), 385–388 (2006)CrossRefGoogle Scholar
  56. H. Suzuki, T. Moriwaki, Y. Yamamoto, Y. Goto, Precision cutting of aspherical ceramic molds with micro PCD milling tool. CIRP Ann. Manuf. Technol. 56(1), 131–134 (2007)CrossRefGoogle Scholar
  57. H. Suzuki, S. Hamada, T. Okino, M. Kondo, Y. Yamagata, T. Higuchi, Ultraprecision finishing of micro-aspheric surface by ultrasonic two-axis vibration assisted polishing. CIRP Ann. 59(1), 347–350 (2010)CrossRefGoogle Scholar
  58. T. Tawakoli, B. Azarhoushang, M. Rabiey, Ultrasonic assisted dry grinding of 42CrMo4. Int. J. Adv. Manuf. Technol. 42(9–10), 883–891 (2009)CrossRefGoogle Scholar
  59. E. Uhlmann, S. Piltz, K. Schauer, Micro milling of sintered tungsten–copper composite materials. J. Mater. Process. Technol. 167(2–3), 402–407 (2005)CrossRefGoogle Scholar
  60. A.C. Wang, B.H. Yan, X.T. Li, F.Y. Huang, Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining. Int. J. Mach. Tools Manuf. 42(8), 915–923 (2002)CrossRefGoogle Scholar
  61. A. Weremczuk, R. Rusinek, J. Warminski, The concept of active elimination of vibrations in milling process. Proc. CIRP 31, 82–87 (2015)CrossRefGoogle Scholar
  62. M. Xiao, K. Sato, S. Karube, T. Soutome, The effect of tool nose radius in ultrasonic vibration cutting of hard metal. Int. J. Mach. Tools Manuf. 43(13), 1375–1382 (2003)CrossRefGoogle Scholar
  63. B. Xue, Y. Yan, J. Li, B. Yu, Z. Hu, X. Zhao, Q. Cai, Study on the micro-machining process with a micro three-sided pyramidal tip and the circular machining trajectory. J. Mater. Process. Technol. 217, 122–130 (2015)CrossRefGoogle Scholar
  64. Y.B. Zeng, Q. Yu, S.H. Wang, D. Zhu, Enhancement of mass transport in micro wire electrochemical machining. CIRP Ann. Manuf. Technol. 61(1), 195–198 (2012)CrossRefGoogle Scholar
  65. C. Zhang, E. Brinksmeier, R. Rentsch, Micro-USAL technique for the manufacture of high quality microstructures in brittle materials. Precis. Eng. 30(4), 362–372 (2006)CrossRefGoogle Scholar
  66. H.Y. Zheng, H. Huang, Ultrasonic vibration-assisted femtosecond laser machining of microholes. J. Micromech. Microeng. 17(8), N58 (2007)CrossRefGoogle Scholar
  67. H.Y. Zheng, Z.W. Jiang, Femtosecond laser micromachining of silicon with an external electric field. J. Micromech. Microeng. 20(1), 017001 (2009)CrossRefGoogle Scholar
  68. M. Zhou, Y.T. Eow, B.K.A. Ngoi, E.N. Lim, Vibration-assisted precision machining of steel with PCD tools. Mater. Manuf. Processes 18(5), 825–834 (2003)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of Technology SilcharSilcharIndia

Personalised recommendations