Laser-Assisted Micromachining

  • Sumit BhowmikEmail author
  • Divya Zindani
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


One of the emerging technologies in the world of micromachining is that of the usage of short and ultrashort laser pulses. Many manufacturing industries have been revolutionized by the employability of laser beam micromachining (LBMM) process for a number of micro-engineering applications. Short and ultrashort laser pulses houses tremendous amount of thermal energy that can be used for the fabrication of micro-features using a wide range of engineering materials. To further extend the capability of the process, the laser is integrated with other standalone micromachining processes such as micro-milling, micro-grinding, electrochemical micromachining, water jet micromachining, etc., and giving rise to hybrid micromachining setup in the form of laser-assisted micromachining process. This chapter begins with a short introduction on laser beam machining. Laser beam micromachining has been discussed next in the subsequent section. The next section elucidates on few applications of the laser-assisted micromachining process. The chapter finally terminates with the concluding remarks.


Laser beam micromachining Laser ablation Nanosecond laser Picosecond laser Femtosecond laser Laser-assisted water jet micromachining Laser-assisted jet electrochemical micromachining Laser-assisted micro-milling/grinding 


  1. D. Ashkenasi, G. Müller, A. Rosenfeld, R. Stoian, I.V. Hertel, N.M. Bulgakova, E.E.B. Campbell, Fundamentals and advantages of ultrafast micro-structuring of transparent materials. Appl. Phys. A 77(2), 223–228 (2003)Google Scholar
  2. I.Y. Chung, J.D. Kim, K.H. Kang, Ablation drilling of invar alloy using ultrashort pulsed laser. Int. J. Precis. Eng. Manuf. 10(2), 11–16 (2009)CrossRefGoogle Scholar
  3. A.K.M. De Silva, P.T. Pajak, D.K. Harrison, J.A. McGeough, Modelling and experimental investigation of laser assisted jet electrochemical machining. CIRP Ann. Manuf. Technol. 53(1), 179–182 (2004)CrossRefGoogle Scholar
  4. A.K.M. De Silva, P.T. Pajak, J.A. McGeough, D.K. Harrison, Thermal effects in laser assisted jet electrochemical machining. CIRP Ann. Manuf. Technol. 60(1), 243–246 (2011)CrossRefGoogle Scholar
  5. C.H. Fan, J.P. Longtin, Modeling optical breakdown in dielectrics during ultrafast laser processing. Appl. Opt. 40(18), 3124–3131 (2001)CrossRefGoogle Scholar
  6. M. Kumar, Laser Assisted Micro Milling of Hard Materials (Doctoral dissertation, Georgia Institute of Technology, 2011)Google Scholar
  7. M. Kumar, S.N. Melkote, Process capability study of laser assisted micro milling of a hard-to-machine material. J. Manuf. Process. 14(1), 41–51 (2012)CrossRefGoogle Scholar
  8. M. Kumar, S.N. Melkote, R. M’Saoubi, Wear behavior of coated tools in laser assisted micro-milling of hardened steel. Wear 296(1–2), 510–518 (2012)CrossRefGoogle Scholar
  9. B. Lauwers, Surface integrity in hybrid machining processes. Proc. Eng. 19, 241–251 (2011)CrossRefGoogle Scholar
  10. X. Liu, D. Du, G. Mourou, Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Quantum Electron. 33(10), 1706–1716 (1997)CrossRefGoogle Scholar
  11. J. Meijer, Laser beam machining (LBM), state of the art and new opportunities. J. Mater. Process. Technol. 149(1–3), 2–17 (2004)CrossRefGoogle Scholar
  12. S. Melkote, M. Kumar, F. Hashimoto, G. Lahoti, Laser assisted micro-milling of hard-to-machine materials. CIRP Ann. 58(1), 45–48 (2009)CrossRefGoogle Scholar
  13. P.T. Pajak, A.K.M. De Silva, J.A. McGeough, D.K. Harrison, Modelling the aspects of precision and efficiency in laser-assisted jet electrochemical machining (LAJECM). J. Mater. Process. Technol. 149(1–3), 512–518 (2004)CrossRefGoogle Scholar
  14. P.T. Pajak, A.K.M. Desilva, D.K. Harrison, J.A. Mcgeough, Precision and efficiency of laser assisted jet electrochemical machining. Precis. Eng. 30(3), 288–298 (2006)CrossRefGoogle Scholar
  15. N.N. Rykalin, A.A. Uglov, Kokora, A., Laser Machining and Welding (Pergamon, 1978)Google Scholar
  16. R.K. Singh, Laser Assisted Mechanical Micromachining of Hard-to-Machine Materials (Doctoral dissertation, Georgia Institute of Technology, 2007)Google Scholar
  17. R. Singh, S.N. Melkote, Characterization of a hybrid laser-assisted mechanical micromachining (LAMM) process for a difficult-to-machine material. Int. J. Mach. Tools Manuf. 47(7–8), 1139–1150 (2007)CrossRefGoogle Scholar
  18. R. Singh, M.J. Alberts, S.N. Melkote, Characterization and prediction of the heat-affected zone in a laser-assisted mechanical micromachining process. Int. J. Mach. Tools Manuf. 48(9), 994–1004 (2008)CrossRefGoogle Scholar
  19. K. Sugioka, M. Meunier, A. Piqué (eds.), Laser Precision Microfabrication, vol. 135 (Springer, 2010)Google Scholar
  20. S. Sun, M. Brandt, M.S. Dargusch, Thermally enhanced machining of hard-to-machine materials—a review. Int. J. Mach. Tools Manuf. 50(8), 663–680 (2010)CrossRefGoogle Scholar
  21. V. Tangwarodomnukun, Towards Damage-free Micro-fabrication of Silicon Substrates using a Hybrid Laser-Waterjet Technology (Doctoral dissertation, Ph. D. dissertation, The University of New South Wales, 2012)Google Scholar
  22. V. Tangwarodomnukun, J. Wang, C.Z. Huang, H.T. Zhu, An investigation of hybrid laser–waterjet ablation of silicon substrates. Int. J. Mach. Tools Manuf. 56, 39–49 (2012)CrossRefGoogle Scholar
  23. Y.L. Yao, H. Chen, W. Zhang, Time scale effects in laser material removal: a review. Int. J. Adv. Manuf. Technol. 26(5–6), 598–608 (2005)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of Technology SilcharSilcharIndia

Personalised recommendations