Advertisement

Overview of Hybrid Micro-manufacturing Processes

  • Sumit BhowmikEmail author
  • Divya Zindani
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Micromachining processes have been cynosure for the manufacturing industries owing to its potential to manufacture micro-components such as microsensors, micro-displays, micro-batteries, etc. The different micromachining techniques have established themselves in different areas of daily life such as automotive, photonics, medical instruments, renewable energy, and aerospace. The micro-components are made from multiple materials and are of complex shapes that demand accuracy at submicron levels. To meet the accuracy expectations, a number of micromachining processes and their integration are required. The present chapter conceptualizes the hybrid micromachining processes providing a brief introduction, classification, and few recent applications of the processes. The importance of hybrid machining techniques is reflected in the future scope provided towards the end of the chapter. The chapter finally ends with the concluding remarks.

Keywords

Classification Electro-discharge micro-grinding Electrochemical discharge micromachining Laser-assisted micro-milling Electrochemical discharge micro-grinding Pulse-assisted electrochemical machining process Electromagnetic-assisted micromachining 

References

  1. J. Akbari, H. Borzoie, M.H. Mamduhi, Study on ultrasonic vibration effects on grinding process of alumina ceramic (Al2O3). World Acad. Sci. Eng. Technol. 41, 785–789 (2008)Google Scholar
  2. A.N. Amin, S.B. Dolah, M.B. Mahmud, M.A. Lajis, Effects of workpiece preheating on surface roughness, chatter and tool performance during end milling of hardened steel D2. J. Mater. Process. Technol. 201(1–3), 466–470 (2008)CrossRefGoogle Scholar
  3. D.K. Aspinwall, R.C. Dewes, J.M. Burrows, M.A. Paul, B.J. Davies, Hybrid high speed machining (HSM): system design and experimental results for grinding/HSM and EDM/HSM. CIRP Ann. Manuf. Technol. 50(1), 145–148 (2001)CrossRefGoogle Scholar
  4. M. Barletta, V. Tagliaferri, Development of an abrasive jet machining system assisted by two fluidized beds for internal polishing of circular tubes. Int. J. Mach. Tools Manuf. 46(3–4), 271–283 (2006)CrossRefGoogle Scholar
  5. M. Barletta, D. Ceccarelli, S. Guarino, V. Tagliaferri, Fluidized bed assisted abrasive jet machining (FB-AJM): precision internal finishing of Inconel 718 components. J. Manuf. Sci. Eng. 129(6), 1045–1059 (2007)CrossRefGoogle Scholar
  6. D. Bhaduri, S.L. Soo, D.K. Aspinwall, D. Novovic, P. Harden, S. Bohr, D. Martin, A study on ultrasonic assisted creep feed grinding of nickel based superalloys. Proc. CIRP 1, 359–364 (2012)CrossRefGoogle Scholar
  7. D.E. Brehl, T.A. Dow, Review of vibration-assisted machining. Precis. Eng. 32(3), 153–172 (2008)CrossRefGoogle Scholar
  8. X.D. Cao, B.H. Kim, C.N. Chu, Hybrid micromachining of glass using ECDM and micro grinding. Int. J. Precis. Eng. Manuf. 14(1), 5–10 (2013)CrossRefGoogle Scholar
  9. P. Cardoso, J.P. Davim, A brief review on micromachining of materials. Rev. Adv. Mater. Sci 30(1), 98–102 (2012)Google Scholar
  10. W. Chang, Development of Hybrid Micro Machining Approaches and Test-bed (Doctoral dissertation, Heriot-Watt University, 2012)Google Scholar
  11. O. Çolak, Investigation on machining performance of inconel 718 in high pressure cooling conditions. Strojniški vestnik-J. Mech. Eng. 58(11), 683–690 (2012)CrossRefGoogle Scholar
  12. C. Courbon, D. Kramar, P. Krajnik, F. Pusavec, J. Rech, J. Kopac, Investigation of machining performance in high-pressure jet assisted turning of Inconel 718: an experimental study. Int. J. Mach. Tools Manuf. 49(14), 1114–1125 (2009)CrossRefGoogle Scholar
  13. D.T. Curtis, S.L. Soo, D.K. Aspinwall, C. Sage, Electrochemical superabrasive machining of a nickel-based aeroengine alloy using mounted grinding points. CIRP Ann. 58(1), 173–176 (2009)CrossRefGoogle Scholar
  14. L. Dąbrowski, M. Marciniak, M., Investigation into hybrid abrasive and electrodischarge machining. Arch. Civ. Mech. Eng. (Oficyna Wydawnicza Politechniki Wroclawskiej), 5(2) (2005)Google Scholar
  15. H.E. De Bruijn, Effect of a magnetic field on the gap cleaning in EDM. Ann. CIRP 27(1), 93–95 (1978)Google Scholar
  16. H. El-Hofy, Advanced Machining Processes: Nontraditional and Hybrid Machining Processes, vol. 120 (McGraw-Hill, New York, 2005)Google Scholar
  17. T. Endo, T. Tsujimoto, K. Mitsui, Study of vibration-assisted micro-EDM—the effect of vibration on machining time and stability of discharge. Precis. Eng. 32(4), 269–277 (2008)CrossRefGoogle Scholar
  18. C. Gao, Z. Liu, A study of ultrasonically aided micro-electrical-discharge machining by the application of workpiece vibration. J. Mater. Process. Technol. 139(1–3), 226–228 (2003)CrossRefGoogle Scholar
  19. V. Garcí, I. Arriola, O. Gonzalo, J. Leunda, Mechanisms involved in the improvement of Inconel 718 machinability by laser assisted machining (LAM). Int. J. Mach. Tools Manuf. 74, 19–28 (2013)CrossRefGoogle Scholar
  20. M.P. Jahan, M. Rahman, Y.S. Wong, L. Fuhua, On-machine fabrication of high-aspect-ratio micro-electrodes and application in vibration-assisted micro-electrodischarge drilling of tungsten carbide. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 224(5), 795–814 (2010)CrossRefGoogle Scholar
  21. B.D. Jerold, M.P. Kumar, The influence of cryogenic coolants in machining of Ti–6Al–4V. J. Manuf. Sci. Eng. 135(3), 031005 (2013)CrossRefGoogle Scholar
  22. J. Kenda, F. Pusavec, J. Kopac, Analysis of residual stresses in sustainable cryogenic machining of nickel based alloy—Inconel 718. J. Manuf. Sci. Eng. 133(4), 041009 (2011)CrossRefGoogle Scholar
  23. A.B. Khairy, Aspects of surface and edge finish by magnetoabrasive particles. J. Mater. Process. Technol. 116(1), 77–83 (2001)CrossRefGoogle Scholar
  24. K.S. Kim, J.H. Kim, J.Y. Choi, C.M. Lee, A review on research and development of laser assisted turning. Int. J. Precis. Eng. Manuf. 12(4), 753–759 (2011)CrossRefGoogle Scholar
  25. M. Kock, V. Kirchner, R. Schuster, Electrochemical micromachining with ultrashort voltage pulses—a versatile method with lithographical precision. Electrochim. Acta 48(20–22), 3213–3219 (2003)CrossRefGoogle Scholar
  26. J. Kozak, Abrasive electrodischarge grinding (AEDG) of advanced materials. Arch. Civ. Mech. Eng. 2(1), 83–101 (2002)Google Scholar
  27. J. Kozak, D. Gulbinowicz, Z. Gulbinowicz, Investigations of MICRO electrochemical machining with ultrashort pulses, in Proceedings of the 5th International Conference of the European Society for Precision Engineering and Nanotechnology, Montpellier (2005), pp. 8–11Google Scholar
  28. M. Kumar, S.N. Melkote, Process capability study of laser assisted micro milling of a hard-to-machine material. J. Manuf. Process. 14(1), 41–51 (2012)CrossRefGoogle Scholar
  29. M.A. Lajis, A.K.M. Amin, A.N. Karim, C. Daud, M. Radzi, T.L. Ginta, Hot machining of hardened steels with coated carbide inserts. Am. J. Eng. Appl. Sci. 2(2), 421–427 (2009)CrossRefGoogle Scholar
  30. B. Lauwers, Surface integrity in hybrid machining processes. Proc. Eng. 19, 241–251 (2011)CrossRefGoogle Scholar
  31. J. Lee, S. Lim, D. Shin, H. Sohn, J. Kim, J. Kim, Laser assisted machining process of HIPed silicon nitride. JLMN-J. Laser Micro/Nanoeng. 4, 207–211 (2009)CrossRefGoogle Scholar
  32. C.T. Leondes (ed.), Mems/Nems: (1) Handbook Techniques and Applications Design Methods, (2) Fabrication Techniques, (3) Manufacturing Methods, (4) Sensors and Actuators, (5) Medical applications and MOEMS (Springer Science & Business Media, 2007)Google Scholar
  33. C.E. Leshock, J.N. Kim, Y.C. Shin, Plasma enhanced machining of Inconel 718: modeling of workpiece temperature with plasma heating and experimental results. Int. J. Mach. Tools Manuf. 41(6), 877–897 (2001)CrossRefGoogle Scholar
  34. K.M. Li, Y.M. Hu, Z.Y. Yang, M.Y. Chen, Experimental study on vibration-assisted grinding. J. Manuf. Sci. Eng. 134(4), 041009 (2012)CrossRefGoogle Scholar
  35. Y.C. Lin, H.S. Lee, Machining characteristics of magnetic force-assisted EDM. Int. J. Mach. Tools Manuf. 48(11), 1179–1186 (2008)CrossRefGoogle Scholar
  36. J.W. Liu, T.M. Yue, Z.N. Guo, Grinding-aided electrochemical discharge machining of particulate reinforced metal matrix composites. Int. J. Adv. Manuf. Technol. 68(9–12), 2349–2357 (2013)CrossRefGoogle Scholar
  37. X. Luo, K. Cheng, D. Webb, F. Wardle, Design of ultraprecision machine tools with applications to manufacture of miniature and micro components. J. Mater. Process. Technol. 167(2–3), 515–528 (2005)CrossRefGoogle Scholar
  38. M. Madou, Fundamentals of Microfabrication and Nanotechnology, 3rd edn. (2009)Google Scholar
  39. S. Melkote, M. Kumar, F. Hashimoto, G. Lahoti, Laser assisted micro-milling of hard-to-machine materials. CIRP Ann. 58(1), 45–48 (2009)CrossRefGoogle Scholar
  40. M.D. Nguyen, Simultaneous Micro-EDM and Micro-ECM in Low Resistivity Deionized Water (Ph.D. thesis, National University of Singapore, 2013)Google Scholar
  41. P. Piljek, Z. Keran, M. Math, Micromachining-review of literature from 1980 to 2010. Interdisc. Desc. Complex Syst.: INDECS 12(1), 1–27 (2014)CrossRefGoogle Scholar
  42. N. Qin, Z.J. Pei, C. Treadwell, D.M. Guo, Physics-based predictive cutting force model in ultrasonic-vibration-assisted grinding for titanium drilling. J. Manuf. Sci. Eng. 131(4), 041011 (2009)CrossRefGoogle Scholar
  43. P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication, vol. 1: Microlithography: SPIE Opt (1997)Google Scholar
  44. K.P. Rajurkar, D. Zhu, J.A. McGeough, J. Kozak, A. De Silva, New developments in electro-chemical machining. CIRP Ann. 48(2), 567–579 (1999)CrossRefGoogle Scholar
  45. K.P. Rajurkar, G. Levy, A. Malshe, M.M. Sundaram, J. McGeough, X. Hu, R. Resnick, A. DeSilva, Micro and nano machining by electro-physical and chemical processes. CIRP Ann. Manuf. Technol. 55(2), 643–666 (2006)CrossRefGoogle Scholar
  46. M.R. Shabgard, B. Sadizadeh, H. Kakoulvand, The effect of ultrasonic vibration of workpiece in electrical discharge machining of AISIH13 tool steel. World Acad. Sci. Eng. Technol. 3, 332–336 (2009)Google Scholar
  47. C.H. She, C.W. Hung, Development of multi-axis numerical control program for mill—turn machine. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 222(6), 741–745 (2008)CrossRefGoogle Scholar
  48. H.R. Shih, K.M. Shu, A study of electrical discharge grinding using a rotary disk electrode. Int. J. Adv. Manuf. Technol. 38(1–2), 59–67 (2008)CrossRefGoogle Scholar
  49. Y.C. Shin, J.N. Kim, Plasma enhanced machining of Inconel 718, in ASME International Mechanical Engineering Congress and Exposition, Atlanta, vol. 4 (1996), pp. 243–249Google Scholar
  50. S. Singh, H.S. Shan, Development of magneto abrasive flow machining process. Int. J. Mach. Tools Manuf. 42(8), 953–959 (2002)CrossRefGoogle Scholar
  51. D.R. Unune, H.S. Mali, Current status and applications of hybrid micro-machining processes: a review. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 229(10), 1681–1693 (2015)CrossRefGoogle Scholar
  52. R.N. Yadav, V. Yadava, Electrical discharge grinding (EDG): a review, in Proceedings of the National Conference on Trends and Advances in Mechanical Engineering, YMCA University of Science & Technology, Faridabad, Haryana (2012), pp. 590–597Google Scholar
  53. Q.H. Zhang, R. Du, J.H. Zhang, Q.B. Zhang, An investigation of ultrasonic-assisted electrical discharge machining in gas. Int. J. Mach. Tools Manuf. 46(12–13), 1582–1588 (2006)CrossRefGoogle Scholar
  54. Z.P. Zheng, K.L. Wu, Y.S. Hsu, F.Y. Huang, B.H. Yan, Feasibility of 3D surface machining on pyrex glass by electrochemical discharge machining (ECDM), in Proc. AEMS07 (2007), pp. 28–30Google Scholar
  55. Z. Zhu, V.G. Dhokia, A. Nassehi, S.T. Newman, A review of hybrid manufacturing processes—state of the art and future perspectives. Int. J. Comput. Integr. Manuf. 26(7), 596–615 (2013)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of Technology SilcharSilcharIndia

Personalised recommendations