Advertisement

Using Geostatistics and Multicriteria Spatial Analysis to Map Forest Species Biogeophysical Suitability: A Study Case for the Centro Region of Portugal

  • Luís Quinta-NovaEmail author
  • Natália Roque
  • Isabel Navalho
  • Cristina Alegria
  • Teresa Albuquerque
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 953)

Abstract

There are various methodologies for defining soil uses to promote sustainable utilization of rural land. Many of these methods rely on decision support systems based on multicriteria spatial analysis. In this study, a two-step spatial approach was performed to produce forest species suitability maps. The objectives of the study were: (1) to produce bioclimatic indices maps using a geostatistical approach based on climate data; (2) to produce biogeophysical suitability maps for the main Portuguese forest species by multicriteria spatial analysis using the analytic hierarchy process (AHP) integrating three factors (terrain slope, soil diagnostic features and bioclimatic indices); and (3) to conduct a comparative analysis of the current forest species area distributions to these species biogeophysical suitability areas. With these objectives, the Centro region of Portugal was used as the study area. Our methodological approach allowed us to assess the biogeophysical suitability of Maritime pine, Eucalyptus, Cork oak and Holm oak in the Centro region of Portugal. The findings in this study emphasize the potential that the Centro region of Portugal has for expanding the spread of native oaks as recommended by the National Strategy for Forests to respond to climate changes, improve landscape biodiversity and mitigate fire hazards. The species biogeophysical suitability maps may be important tools for decision support in landscape planning to define species’ priority afforestation areas. From an instrumental point of view, the use of this methodology may interest stakeholders and others with roles in planning and land management. Further investigation is needed to integrate the impact of climate change in forest species spatial modeling to assist in supporting future national strategies for forests.

Keywords

Suitability Forest management GIS AHP 

References

  1. 1.
    Guiomar, N., Fernandes, J.P., Neves, N.: Modelo de Análise Espacial para Avaliação do carácter Multifuncional do Espaço. In: Atas do III Congresso de Estudos Rurais (III CER), Faro, Universidade do Algarve, 1–3 November 2007, SPER. Évora (2007)Google Scholar
  2. 2.
    Collins, M.G., Steiner, F.R., Rushman, M.J.: Land-use suitability analysis in the United States: historical development and promising technological achievements. Environ. Manage. 28(5), 611–621 (2001)CrossRefGoogle Scholar
  3. 3.
    Malczewski, J.: GIS-based land-use suitability analysis: a critical overview. Prog. Plann. 62(1), 3–65 (2004)CrossRefGoogle Scholar
  4. 4.
    Parimala, M., Lopez, D.: Decision making in agriculture based on land suitability – spatial data analysis approach. J. Theor. Appl. Inf. Technol. 46(1), 17–23 (2012)CrossRefGoogle Scholar
  5. 5.
    Steiguer, J.E., Liberti, L., Schuler, A., Hansen, B.: Multi-Criteria Decision Models for Forestry and Natural. USDA Forest Service, Northeastern Research Station, pp. 8; 16–23 (2003)Google Scholar
  6. 6.
    Schmoldt, D.L., Mendosa, G.A., Kangas, J.: Past developments and future directions for the AHP in natural resources. In: Schmoldt, D.L., Kangas, J., Mendoza, G.A., Pesonen, M. (eds.) The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making, pp. 289–305. Kluwer Academic Publications, Dordrecht (2001)CrossRefGoogle Scholar
  7. 7.
    Reynolds, K.M., Hessburg, P.F.: Decision support for integrated landscape evaluation and restoration planning. For. Ecol. Manage. 207, 263–278 (2005)CrossRefGoogle Scholar
  8. 8.
    Saaty, T.L.: The Analytical Hierarchy Process: Planning, Priority Setting, Resource Allocation, 1st edn. McGraw-Hill, New York (1980)zbMATHGoogle Scholar
  9. 9.
    Roy, B.: Multicriteria Methodology for Decision Aiding. Kluwer Academic, Dordrecht (1996)CrossRefGoogle Scholar
  10. 10.
    Antunes, O.E.D.: Análise Multicritério em SIG para Determinação de um Índice Espacializado de Pressão Antrópica Litoral. Casos de Espinho, Caparica e Faro. Dissertação de Mestrado em Gestão do Território. Área de Especialização em Deteção Remota e Sistemas de Informação Geográfica. Universidade Nova de Lisboa. Faculdade de Ciências Sociais e Humanas, Lisboa (2012)Google Scholar
  11. 11.
    Kangas, J., Store, R.L., Leskinen, P., Mehtatalo, L.: Improving the quality of landscape ecological forest planning by utilizing advanced decision-support tools. For. Ecol. Manage. 132, 157–171 (2000)CrossRefGoogle Scholar
  12. 12.
    Quinta-Nova, L.C., Roque, N.: Agroflorestal suitability evaluation of a subregional area in Portugal using multicritéria spacial analysis. In: Internacional Congress of Landscape Ecology – Understanding Mediterranean Landscapes Human vs. Nature, 23–25 October, Antalaya, Turkey (2014)Google Scholar
  13. 13.
    DR: Resolução de Conselho de Ministros no. 114/2006. Estratégia Nacional para as Florestas. Diário da República, I Série, no. 179 de 15 de setembro (2006). https://dre.pt/application/file/539887. Accessed 9 Mar 2018
  14. 14.
    DR: Resolução de Conselho de Ministros no. 6-B/2015. Estratégia Nacional para as Florestas. Diário da República, I Série, no. 24 de 4 de fevereiro 2015 (2015). https://dre.pt/application/file/66432612. Accessed 9 Mar 2018
  15. 15.
    ICNF: Planos regionais de ordenamento florestal (2018). http://www2.icnf.pt/portal/florestas/profs. Accessed 9 Mar 2018
  16. 16.
    AFN: Inventário Florestal Nacional Portugal Continental. 5º Inventário Florestal Nacional 2005–2006. Relatório Final. Autoridade Florestal Nacional (2010). http://www.icnf.pt/portal/florestas/ifn/ifn5/relatorio-final-ifn5-florestat-1. Accessed May 2015
  17. 17.
    DGT: Especificações técnicas da Carta de Uso e Ocupação do Solo de Portugal Continental para 1995, 2007 e 2010. Relatório Técnico. Lisboa, Direção-Geral do Território (2016). http://www.dgterritorio.pt/cartografia_e_geodesia/cartografia/cartografia_tematica/cartografia_de_uso_e_ocupacao_do_solo__cos_clc_e_copernicus_/. Accessed 27 July 2017
  18. 18.
    DGT: Catálogo de serviços de dados geográficos. Lisboa, Direção Geral do Território (2017). http://mapas.dgterritorio.pt/geoportal/catalogo.html. Accessed 27 July 2017
  19. 19.
    Matheron, G.: La théorie des variables régionalisées, et ses applications. Centre Géostatistique et Morphologie Mathématique. Ecole Nationale Supérieure des Mines de Paris, Paris (1970)Google Scholar
  20. 20.
    Matheron, G.: The theory of regionalized variables and its applications. Les Cahiers du Centre de Morphologie Mathématique, no. 5, Ecole des Mines de Paris, 211 p. (1971)Google Scholar
  21. 21.
    Journel, A.G., Huijbregts, C.J.: Mining Geostatistics. Academic Press, London (1978)Google Scholar
  22. 22.
    Journel, A.G., Huijbregts, C.J.: Mining Geostatistics (1978). Gringarten and DeutschGoogle Scholar
  23. 23.
    Goovaerts, P.: Geostatistics for Natural Resources Evaluation. University Press, New York, Oxford (1997)Google Scholar
  24. 24.
    Albuquerque, M.T.D., Antunes, I.M.H.R., Seco, M.F.M., Oliveira, S.F., Lobón, G.S.: Sequential gaussian simulation of uranium spatial distribution - a transboundary watershed case study. Procedia Earth and Planet. Sci. (2014). ISSN 1878-5220.  https://doi.org/10.1016/j.proeps.2014.05.002CrossRefGoogle Scholar
  25. 25.
    Isaaks, E.H., Srivastava, R.M.: An Introduction to Applied Geostatistics, p. 413. Oxford University Press, New York (1989)Google Scholar
  26. 26.
    Soares, A.: Geoestatística para as ciencias da terra e do ambiente, 206 pp. Editorial Press (2000)Google Scholar
  27. 27.
    Chica, M.: La Geoestadística como herramienta de análisis espacial de datos de inventario forestal. In: Actas de la I reunión de inventario y teledetección forestal. Cuad. Soc. Esp. Cienc. For., vol. 19, pp. 47–55 (2005)Google Scholar
  28. 28.
    Ferreira, A.G., et al.: Plano Específico de Ordenamento Florestal para o Alentejo. Universidade de Évora, Évora (2001)Google Scholar
  29. 29.
    Correia, A.V., Oliveira, A.V.: Principal Espécies Florestais com Interesse para Portugal – Zonas de influência atlântica. Estudos e Informação no. 322. Direção Geral de Florestas, Lisboa (2003)Google Scholar
  30. 30.
    Dias, S.S., Ferreira, A.G., Gonçalves, A.C.: Definição de zonas de aptidão para espécies florestais com base em características edafo-climáticas. Silva Lusit. 16, 17–35 (2008)Google Scholar
  31. 31.
    Fernandes, P.M., Luz, A., Loureiro, C.: Changes in wildfire severity from maritime pine woodland to contiguous forest types in the mountains of northwestern Portugal. For. Ecol. Manage. 260, 883–892 (2010).  https://doi.org/10.1016/j.foreco.2010.06.008CrossRefGoogle Scholar
  32. 32.
    ICNF: IFN6 – Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares. Instituto da Conservação da Natureza e das Florestas, Lisboa (2013). http://www.icnf.pt/portal/florestas/ifn/ifn6#dad. Accessed 29 July 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto Politécnico de Castelo Branco, Escola Superior AgráriaCastelo BrancoPortugal
  2. 2.CERNAS - Centro de Estudos de Recursos Naturais, Ambiente e Sociedade, Instituto Politécnico de Castelo Branco, Escola Superior AgráriaCastelo BrancoPortugal
  3. 3.Instituto Politécnico de Castelo Branco, Escola Superior de TecnologiaCastelo BrancoPortugal

Personalised recommendations