Future Foods pp 167-201 | Cite as

Nutraceuticals: Superfoods or Superfads?

  • David Julian McClements


Nutraceuticals are bioactive molecules found in foods that promote human health by acting like pharmaceuticals. Nutraceuticals are claimed to be able to combat heart disease, diabetes, hypertension, cancer and various other diseases. The recent case of cannibal hamsters is used to highlight the importance of minor food components on health and behavior. The potential of common nutraceuticals (such as curcumin, resveratrol, β-carotene, omega-3s, and polyphenols) and superfoods (such as coffee, tea, nuts, chocolate, and berries) to improve our health and wellness is critically evaluated. The difficulty in actually assessing the efficacy of nutraceuticals is highlighted. The biological mechanisms underlying how nutraceuticals work is described in a user-friendly manner for the case of cancer. The challenges in incorporating nutraceuticals into foods and ensuring that they are bioavailable is covered.


  1. 1.
    Patwardhan, B., D. Warude, P. Pushpangadan, and N. Bhatt. 2005. Ayurveda and Traditional Chinese Medicine: A Comparative Overview. Evidence-based Complementary and Alternative Medicine 2 (4): 465–473.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Crair, B. 2018. Cereal Killers. Smithsonian, 48(10 (March)): 23–26.Google Scholar
  3. 3.
    Sackett, D.L., W.M.C. Rosenberg, J.A.M. Gray, R.B. Haynes, and W.S. Richardson. 1996. Evidence Based Medicine: What it is and What it isn’t (reprinted from BMJ, vol 312, pg 71–72, ). Clinical Orthopaedics and Related Research, 2007(455): 3–5.Google Scholar
  4. 4.
    Gupta, C.G. 2016. Nutraceuticals: Efficacy, Safety and Toxicity. London: Academic.Google Scholar
  5. 5.
    Larsen, R., K.E. Eilertsen, and E.O. Elvevoll. 2011. Health Benefits of Marine Foods and Ingredients. Biotechnology Advances 29 (5): 508–518.PubMedCrossRefGoogle Scholar
  6. 6.
    Russo, G.L. 2009. Dietary n-6 and n-3 Polyunsaturated Fatty Acids: From Biochemistry to Clinical Implications in Cardiovascular Prevention. Biochemical Pharmacology 77 (6): 937–946.PubMedCrossRefGoogle Scholar
  7. 7.
    Tur, J.A., M.M. Bibiloni, A. Sureda, and A. Pons. 2012. Dietary Sources of Omega 3 Fatty Acids: Public Health Risks and Benefits. British Journal of Nutrition 107: S23–S52.PubMedCrossRefGoogle Scholar
  8. 8.
    Lorente-Cebrian, S., A.G.V. Costa, S. Navas-Carretero, M. Zabala, J.A. Martinez, and M.J. Moreno-Aliaga. 2013. Role of Omega-3 Fatty Acids in Obesity, Metabolic Syndrome, and Cardiovascular Diseases: a Review of the Evidence. Journal of Physiology and Biochemistry 69 (3): 633–651.PubMedCrossRefGoogle Scholar
  9. 9.
    Abdelhamid, A.S., T.J. Brown, J.S. Brainard, P. Biswas, G.C. Thorpe, H.J. Moore, K.H.O. Deane, F.K. AlAbdulghafoor, C.D. Summerbell, H.V. Worthington, F. Song, and L. Hooper. 2018. Omega-3 Fatty Acids for the Primary and Secondary Prevention of Cardiovascular Disease. Cochrane Database of Systematic Reviews 7.Google Scholar
  10. 10.
    Waraho, T., D.J. McClements, and E.A. Decker. 2011. Mechanisms of Lipid Oxidation in Food Dispersions. Trends in Food Science & Technology 22 (1): 3–13.CrossRefGoogle Scholar
  11. 11.
    Vieira, S., G.D. Zhang, and E.A. Decker. 2017. Biological Implications of Lipid Oxidation Products. Journal of the American Oil Chemists Society 94 (3): 339–351.CrossRefGoogle Scholar
  12. 12.
    Park, Y., and M.W. Pariza. 2007. Mechanisms of Body Fat Modulation by Conjugated Linoleic Acid (CLA). Food Research International 40 (3): 311–323.CrossRefGoogle Scholar
  13. 13.
    ———. 2009. Bioactivities and Potential Mechanisms of Action for Conjugated Fatty Acids. Food Science and Biotechnology 18 (3): 586–593.Google Scholar
  14. 14.
    Rahbar, A.R., A. Ostovar, S.M. Derakhshandeh-Rishehri, L. Janani, and A. Rahbar. 2017. Effect of Conjugated Linoleic Acid as a Supplement or Enrichment in Foods on Blood Glucose and Waist Circumference in Humans: A Meta-analysis. Endocrine Metabolic & Immune Disorders-Drug Targets 17 (1): 5–18.CrossRefGoogle Scholar
  15. 15.
    Sahebkar, A., M.C. Serban, A. Gluba-Brzozka, D.P. Mikhailidis, A.F. Cicero, J. Rysz, and M. Banach. 2016. Lipid-Modifying Effects of Nutraceuticals: An Evidence-Based Approach. Nutrition 32 (11–12): 1179–1192.PubMedCrossRefGoogle Scholar
  16. 16.
    Fernandes, P., and J.M.S. Cabral. 2007. Phytosterols: Applications and Recovery Methods. Bioresource Technology 98 (12): 2335–2350.PubMedCrossRefGoogle Scholar
  17. 17.
    John, S., A.V. Sorokin, and P.D. Thompson. 2007. Phytosterols and Vascular Disease. Current Opinion in Lipidology 18 (1): 35–40.PubMedCrossRefGoogle Scholar
  18. 18.
    Rocha, M., C. Banuls, L. Bellod, A. Jover, V.M. Victor, and A. Hernandez-Mijares. 2011. A Review on the Role of Phytosterols: New Insights Into Cardiovascular Risk. Current Pharmaceutical Design 17 (36): 4061–4075.PubMedCrossRefGoogle Scholar
  19. 19.
    Milani, A., M. Basirnejad, S. Shahbazi, and A. Bolhassani. 2017. Carotenoids: Biochemistry, Pharmacology and Treatment. British Journal of Pharmacology 174 (11): 1290–1324.PubMedCrossRefGoogle Scholar
  20. 20.
    Cazzonelli, C.I. 2011. Carotenoids in Nature: Insights From Plants and Beyond. Functional Plant Biology 38 (11): 833–847.CrossRefGoogle Scholar
  21. 21.
    Rao, A.V., and L.G. Rao. 2007. Carotenoids and Human Health. Pharmacological Research 55 (3): 207–216.PubMedCrossRefGoogle Scholar
  22. 22.
    Mayne, S.T. 1996. Beta-Carotene, Carotenoids, and Disease Prevention in Humans. FASEB Journal 10 (7): 690–701.PubMedCrossRefGoogle Scholar
  23. 23.
    Xianquan, S., J. Shi, Y. Kakuda, and J. Yueming. 2005. Stability of Lycopene During Food Processing and Storage. Journal of Medicinal Food 8 (4): 413–422.PubMedCrossRefGoogle Scholar
  24. 24.
    Higdon, J., V.J. Drake, B. Delage, and E.J. Johnson. Carotenoids. 2016.; Available from: Scholar
  25. 25.
    Stringham, J.M., and B.R. Hammond. 2005. Dietary Lutein and Zeaxanthin: Possible Effects on Visual Function. Nutrition Reviews 63 (2): 59–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Ranard, K.M., S. Jeon, E.S. Mohn, J.C. Griffiths, E.J. Johnson, and J.W. Erdman. 2017. Dietary Guidance for Lutein: Consideration for Intake Recommendations is Scientifically Supported. European Journal of Nutrition 56: 537–542.CrossRefGoogle Scholar
  27. 27.
    Basu, A., and V. Imrhan. 2007. Tomatoes Versus Lycopene in Oxidative Stress and Carcinogenesis: Conclusions from Clinical Trials. European Journal of Clinical Nutrition 61 (3): 295–303.PubMedCrossRefGoogle Scholar
  28. 28.
    Virtamo, J., P. Pietinen, J.K. Huttunen, N. Malila, M.J. Virtanen, D. Albanes, P.R. Taylor, P. Albert, and A.S. Grp. 2003. Incidence of Cancer and Mortality Following Alpha-Tocopherol and Beta-Carotene Supplementation – A Postintervention Follow-up. JAMA-Journal of the American Medical Association 290 (4): 476–485.CrossRefGoogle Scholar
  29. 29.
    Desmarchelier, C., and P. Borel. 2017. Overview of Carotenoid Bioavailability Determinants: From Dietary Factors to Host Genetic Variations. Trends in Food Science & Technology 69: 270–280.CrossRefGoogle Scholar
  30. 30.
    Kopec, R.E., and M.L. Failla. 2018. Recent Advances in the Bioaccessibility and Bioavailability of Carotenoids and Effects of Other Dietary Lipophiles. Journal of Food Composition and Analysis 68: 16–30.CrossRefGoogle Scholar
  31. 31.
    Kocaadam, B., and N. Sanlier. 2017. Curcumin, an Active Component of Turmeric (Curcuma longa), and its Effects on Health. Critical Reviews in Food Science and Nutrition 57 (13): 2889–2895.PubMedCrossRefGoogle Scholar
  32. 32.
    Hatcher, H., R. Planalp, J. Cho, F.M. Tortia, and S.V. Torti. 2008. Curcumin: From Ancient Medicine to Current Clinical Trials. Cellular and Molecular Life Sciences 65 (11): 1631–1652.PubMedCrossRefGoogle Scholar
  33. 33.
    Epstein, J., I.R. Sanderson, and T.T. MacDonald. 2010. Curcumin as a Therapeutic Agent: The Evidence From in Vitro, Animal and Human Studies. British Journal of Nutrition 103 (11): 1545–1557.PubMedCrossRefGoogle Scholar
  34. 34.
    Kunwar, A. and K.I. Priyadarsini, Curcumin and Its Role in Chronic Diseases, in Anti-Inflammatory Nutraceuticals and Chronic Diseases, S.C. Gupta, S. Prasad, and B.B. Aggarwal, Editors. 2016. 1–25.Google Scholar
  35. 35.
    Zhou, H.Y., C.S. Beevers, and S.L. Huang. 2011. The Targets of Curcumin. Current Drug Targets 12 (3): 332–347.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Heger, M., R.F. van Golen, M. Broekgaarden, and M.C. Michel. 2014. The Molecular Basis for the Pharmacokinetics and Pharmacodynamics of Curcumin and Its Metabolites in Relation to Cancers. Pharmacological Reviews 66 (1): 222–307.PubMedCrossRefGoogle Scholar
  37. 37.
    Higdon, J., V.J. Drake, B. Delage, and L. Howells. Curcumin. 2016.; Available from: Scholar
  38. 38.
    Nelson, K.M., J.L. Dahlin, J. Bisson, J. Graham, G.F. Pauli, and M.A. Walters. 2017. The Essential Medicinal Chemistry of Curcumin. Journal of Medicinal Chemistry 60 (5): 1620–1637.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bahadori, F., and M. Demiray. 2017. A Realistic View on “The Essential Medicinal Chemistry of Curcumin”. ACS Medicinal Chemistry Letters 8 (9): 893–896.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Tome-Carneiro, J., M. Larrosa, A. Gonzalez-Sarrias, F.A. Tomas-Barberan, M.T. Garcia-Conesa, and J.C. Espin. 2013. Resveratrol and Clinical Trials: The Crossroad from In Vitro Studies to Human Evidence. Current Pharmaceutical Design 19 (34): 6064–6093.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Guerrero, R.F., M.C. Garcia-Parrilla, B. Puertas, and E. Cantos-Villar. 2009. Wine, Resveratrol and Health: A Review. Natural Product Communications 4 (5): 635–658.PubMedCrossRefGoogle Scholar
  42. 42.
    Higdon, J., V.J. Drake, B. Delage, and J.C. Espin. Resveratrol. 2016.; Available from: Scholar
  43. 43.
    Haghighatdoost, F., and M. Hariri. 2018. Effect of Resveratrol on Lipid Profile: An Updated Systematic Review and Meta-Analysis on Randomized Clinical Trials. Pharmacological Research 129: 141–150.PubMedCrossRefGoogle Scholar
  44. 44.
    Liu, Y.X., W.Q. Ma, P. Zhang, S.C. He, and D.F. Huang. 2015. Effect of Resveratrol on Blood Pressure: A Meta-Analysis of Randomized Controlled Trials. Clinical Nutrition 34 (1): 27–34.PubMedCrossRefGoogle Scholar
  45. 45.
    Sahebkar, A., C. Serban, S. Ursoniu, N.D. Wong, P. Muntner, I.M. Graham, D.P. Mikhailidis, M. Rizzo, J. Rysz, L.S. Sperling, G.Y.H. Lip, M. Banach, and C. Lipid Blood Pressure Metaanal. 2015. Lack of Efficacy of Resveratrol on C-Reactive Protein and Selected Cardiovascular Risk Factors – Results from a Systematic Review and Meta-Analysis of Randomized Controlled Trials. International Journal of Cardiology 189: 47–55.PubMedCrossRefGoogle Scholar
  46. 46.
    Marx, W., J.T. Kelly, S. Marshall, J. Cutajar, B. Annois, A. Pipingas, A. Tierney, and C. Itsiopoulos. 2018. Effect of Resveratrol Supplementation on Cognitive Performance and Mood in Adults: A Systematic Literature Review and Meta-Analysis of Randomized Controlled Trials. Nutrition Reviews 76 (6): 432–443.PubMedCrossRefGoogle Scholar
  47. 47.
    Liu, K., R. Zhou, B. Wang, and M.T. Mi. 2014. Effect of Resveratrol on Glucose Control and Insulin Sensitivity: A Meta-Analysis:of 11 Randomized Controlled Trials. American Journal of Clinical Nutrition 99 (6): 1510–1519.PubMedCrossRefGoogle Scholar
  48. 48.
    Williamson, G. 2017. The Role of Polyphenols in Modern Nutrition. Nutrition Bulletin 42 (3): 226–235.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Tome-Carneiro, J., and F. Visioli. 2016. Polyphenol-Based Nutraceuticals for the Prevention and Treatment of Cardiovascular Disease: Review of Human Evidence. Phytomedicine 23 (11): 1145–1174.PubMedCrossRefGoogle Scholar
  50. 50.
    Yuan, S., X. Li, Y.L. Jin, and J.P. Lu. 2017. Chocolate Consumption and Risk of Coronary Heart Disease, Stroke, and Diabetes: A Meta-Analysis of Prospective Studies. Nutrients 9 (7).Google Scholar
  51. 51.
    Lin, X.C., I. Zhang, A. Li, J.E. Manson, H.D. Sesso, L. Wang, and S.M. Liu. 2016. Cocoa Flavanol Intake and Biomarkers for Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of Nutrition 146 (11): 2325–2333.PubMedCrossRefGoogle Scholar
  52. 52.
    Ferri, C., G. Desideri, L. Ferri, I. Proietti, S. Di Agostino, L. Martella, F. Mai, P. Di Giosia, and D. Grassi. 2015. Cocoa, Blood Pressure, and Cardiovascular Health. Journal of Agricultural and Food Chemistry 63 (45): 9901–9909.PubMedCrossRefGoogle Scholar
  53. 53.
    Mellor, D.D., D. Amund, E. Georgousopoulou, and N. Naumovski. 2018. Sugar and Cocoa: Sweet Synergy or Bitter Antagonisms. Formulating Cocoa and Chocolate Products for Health: A Narrative Review. International Journal of Food Science and Technology 53 (1): 33–42.CrossRefGoogle Scholar
  54. 54.
    Guasch-Ferre, M., X.R. Liu, V.S. Malik, Q. Sun, W.C. Willett, J.E. Manson, K.M. Rexrode, Y. Li, F.B. Hu, and S.N. Bhupathiraju. 2017. Nut Consumption and Risk of Cardiovascular Disease. Journal of the American College of Cardiology 70 (20): 2519–2532.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Neale, E.P., L.C. Tapsell, V. Guan, and M.J. Batterham. 2017. The Effect of Nut Consumption on Markers of Inflammation and Endothelial Function: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. BMJ Open 7 (11).PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ros, E. 2017. Eat Nuts, Live Longer. Journal of the American College of Cardiology 70 (20): 2533–2535.PubMedCrossRefGoogle Scholar
  57. 57.
    Aune, D., N. Keum, E. Giovannucci, L.T. Fadnes, P. Boffetta, D.C. Greenwood, S. Tonstad, L.J. Vatten, E. Riboli, and T. Norat. 2016. Nut Consumption and Risk of Cardiovascular Disease, Total Cancer, All-Cause and Cause-Specific Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. BMC Medicine 14: 207.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Eneroth, H., S. Wallin, K. Leander, J.N. Sommar, and A. Akesson. 2017. Risks and Benefits of Increased Nut Consumption: Cardiovascular Health Benefits Outweigh the Burden of Carcinogenic Effects Attributed to Aflatoxin B-1 Exposure. Nutrients 9 (12).PubMedCentralCrossRefGoogle Scholar
  59. 59.
    Nile, S.H., and S.W. Park. 2014. Edible Berries: Bioactive Components and Their Effect on Human Health. Nutrition 30 (2): 134–144.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Luis, A., F. Domingues, and L. Pereira. 2018. Association Between Berries Intake and Cardiovascular Diseases Risk Factors: a Systematic Review with Meta-Analysis and Trial Sequential Analysis of Randomized Controlled Trials. Food & Function 9 (2): 740–757.CrossRefGoogle Scholar
  61. 61.
    Heneghan, C., M. Kiely, J. Lyons, and A. Lucey. 2018. The Effect of Berry-Based Food Interventions on Markers of Cardiovascular and Metabolic Health: A Systematic Review of Randomized Controlled Trials. Molecular Nutrition & Food Research 62 (1): 12.CrossRefGoogle Scholar
  62. 62.
    Kowalska, K., and A. Olejnik. 2016. Current Evidence on the Health-Beneficial Effects of Berry Fruits in the Prevention and Treatment of Metabolic Syndrome. Current Opinion in Clinical Nutrition and Metabolic Care 19 (6): 446–452.PubMedCrossRefGoogle Scholar
  63. 63.
    Afrin, S., F. Giampieri, M. Gasparrini, T.Y. Forbes-Hernandez, A. Varela-Lopez, J.L. Quiles, B. Mezzetti, and M. Battino. 2016. Chemopreventive and Therapeutic Effects of Edible Berries: A Focus on Colon Cancer Prevention and Treatment. Molecules 21 (2).PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Guo, X., B. Yang, J. Tan, J. Jiang, and D. Li. 2016. Associations of Dietary Intakes of Anthocyanins and Berry Fruits with Risk of Type 2 Diabetes mellitus: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. European Journal of Clinical Nutrition 70 (12): 1360–1367.PubMedCrossRefGoogle Scholar
  65. 65.
    Sauer, S., and A. Plauth. 2017. Health-Beneficial Nutraceuticals-Myth or Reality? Applied Microbiology and Biotechnology 101 (3): 951–961.PubMedCrossRefGoogle Scholar
  66. 66.
    Chen, H.Y., and R.H. Liu. 2018. Potential Mechanisms of Action of Dietary Phytochemicals for Cancer Prevention by Targeting Cellular Signaling Transduction Pathways. Journal of Agricultural and Food Chemistry 66 (13): 3260–3276.PubMedCrossRefGoogle Scholar
  67. 67.
    Stricker, T., D.V.T. Catenacci, and T.Y. Seiwert. 2011. Molecular Profiling of Cancer-The Future of Personalized Cancer Medicine: A Primer on Cancer Biology and the Tools Necessary to Bring Molecular Testing to the Clinic. Seminars in Oncology 38 (2): 173–185.PubMedCrossRefGoogle Scholar
  68. 68.
    Aronson, J.K. 2017. Defining ‘Nutraceuticals’: Neither Nutritious nor Pharmaceutical. British Journal of Clinical Pharmacology 83 (1): 8–19.PubMedCrossRefGoogle Scholar
  69. 69.
    DeFelice, S.L., Nutrition Stymied: The Nutraceutical Solution. 2014, XXV National Congress of the Italian Chemical Society: The University of Calibria.Google Scholar
  70. 70.
    Smith, E. and K. Arney, Resveratrol, red wine and cancer: What’s the story? 2015.Google Scholar
  71. 71.
    Hanekamp, J.C., A. Bast, and E.J. Calabrese. 2015. Nutrition and Health – Transforming Research Traditions. Critical Reviews in Food Science and Nutrition 55 (8): 1072–1078.CrossRefGoogle Scholar
  72. 72.
    Calabrese, E.J. 2013. Hormetic Mechanisms. Critical Reviews in Toxicology 43 (7): 580–606.PubMedCrossRefGoogle Scholar
  73. 73.
    Calabrese, E.J., M.P. Mattson, and V. Calabrese. 2010. Resveratrol Commonly Displays Hormesis: Occurrence and Biomedical Significance. Human & Experimental Toxicology 29 (12): 980–1015.CrossRefGoogle Scholar
  74. 74.
    Mattson, M.P. 2008. Dietary Factors, Hormesis and Health. Ageing Research Reviews 7 (1): 43–48.PubMedCrossRefGoogle Scholar
  75. 75.
    McClements, D.J., and H. Xiao. 2017. Designing Food Structure and Composition to Enhance Nutraceutical Bioactivity to Support Cancer Inhibition. Seminars in Cancer Biology 46: 215–226.PubMedCrossRefGoogle Scholar
  76. 76.
    McClements, D.J., F. Li, and H. Xiao, The Nutraceutical Bioavailability Classification Scheme: Classifying Nutraceuticals According to Factors Limiting their Oral Bioavailability, in Annual Review of Food Science and Technology, Vol 6, M.P. Doyle and T.R. Klaenhammer, Editors. 2015. 299–327.Google Scholar
  77. 77.
    McClements, D.J. 2018. Enhanced Delivery of Lipophilic Bioactives using Emulsions: A Review of Major Factors Affecting Vitamin, Nutraceutical, and Lipid Bioaccessibility. Food & Function 9 (1): 22–41.CrossRefGoogle Scholar
  78. 78.
    Jenkins, D.J.A., J.D. Spence, E.L. Giovannucci, Y.-i. Kim, R. Josse, R. Vieth, S. Blanco Mejia, E. Viguiliouk, S. Nishi, S. Sahye-Pudaruth, M. Paquette, D. Patel, S. Mitchell, M. Kavanagh, T. Tsirakis, L. Bachiri, A. Maran, N. Umatheva, T. McKay, G. Trinidad, D. Bernstein, A. Chowdhury, J. Correa-Betanzo, G. Del Principe, A. Hajizadeh, R. Jayaraman, A. Jenkins, W. Jenkins, R. Kalaichandran, G. Kirupaharan, P. Manisekaran, T. Qutta, R. Shahid, A. Silver, C. Villegas, J. White, C.W.C. Kendall, S.C. Pichika, J.L. Sievenpiper, and Supplemental Vitamins. 2018. Minerals for CVD Prevention and Treatment. Journal of the American College of Cardiology 71 (22): 2570–2584.PubMedCrossRefGoogle Scholar
  79. 79.
    Schwingshackl, L., H. Boeing, M. Stelmach-Mardas, M. Gottschald, S. Dietrich, G. Hoffmann, and A. Chaimani. 2017. Dietary Supplements and Risk of Cause-Specific Death, Cardiovascular Disease, and Cancer: A Systematic Review and Meta-Analysis of Primary Prevention Trials. Advances in Nutrition 8 (1): 27–39.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David Julian McClements
    • 1
  1. 1.Department of Food ScienceUniversity of Massachusetts AmherstAmherstUSA

Personalised recommendations